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Abstract

Argumentation-based dialogue systems, which can handle
and exchange arguments through dialogue, have been widely
researched. It is required that these systems have sufficient
supporting information to argue their claims rationally; how-
ever, the systems often do not have enough of such infor-
mation in realistic situations. One way to fill in the gap
is acquiring such missing information from dialogue part-
ners (information-seeking dialogue). Existing information-
seeking dialogue systems are based on handcrafted dia-
logue strategies that exhaustively examine missing informa-
tion. However, the proposed strategies are not specialized in
collecting information for constructing rational arguments.
Moreover, the number of system’s inquiry candidates grows
in accordance with the size of the argument set that the sys-
tem deal with. In this paper, we formalize the process of
information-seeking dialogue as Markov decision processes
(MDPs) and apply deep reinforcement learning (DRL) for au-
tomatically optimizing a dialogue strategy. By utilizing DRL,
our dialogue strategy can successfully minimize objective
functions, the number of turns it takes for our system to col-
lect necessary information in a dialogue. We conducted dia-
logue experiments using two datasets from different domains
of argumentative dialogue. Experimental results show that the
proposed formalization based on MDPs works well, and the
policy optimized by DRL outperformed existing heuristic di-
alogue strategies.

Introduction
Argumentation-based dialogue systems are systems that can
handle and exchange arguments with their dialogue part-
ner. These systems have been widely researched because
their ability to argue is required in various argumentative
situations, such as persuasion and negotiation (Amgoud,
Maudet, and Parsons 2000; McBurney and Parsons 2001;
Parsons, Wooldridge, and Amgoud 2002; 2003). In general,
an argument consists of a claim and its facts that support it
(Besnard et al. 2014; Besnard and Hunter 2014). Systems
are required to provide rational arguments in such situations
with sufficient information that supports their claims. For ex-
ample, if a system works as a prosecutor and tries to argue
the claim “The accused is guilty of larceny,” it is required to
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provide supporting facts such as “a witness saw the accused
steal the goods.”

The ability to collect facts in order to construct rational
arguments is important for argumentation-based dialogue
systems because it is not often that the systems have suf-
ficient facts to support their claims beforehand. One way
for the systems to cover for this lack of supporting facts
is collecting the required facts from a dialogue partner or
third parties through interactions, as human being do. For
examples, if a system tries to argue that “The accused is
guilty of larceny” but does not have facts that support this
claim, it can try to collect them by asking the witness
questions such as “Did you see the accused steal some-
thing?” The process of collecting facts can be modeled
as information-seeking dialogue (Walton and Krabbe 1995;
Fan and Toni 2015).

In some existing research, the use of handcrafted dia-
logue strategies for information-seeking dialogue systems
has been proposed (Parsons, Wooldridge, and Amgoud
2002; Fan and Toni 2012; 2015). These strategies are de-
signed to examine all facts exhaustively; however, facts that
support the main claim must be collected quickly because
the available time for the systems to collect facts is limited.

Dialogue modeling based on Markov decision processes
(MDPs) is widely used and these researches have tried to
optimize dialogue strategies by using reinforcement learn-
ing (RL) (Levin, Pieraccini, and Eckert 2000; Williams
and Young 2007; Misu et al. 2012; Yoshino and Kawahara
2015). These strategies are defined as mapping functions
(policies) from states to actions and are trained to maximize
expected future rewards, e.g., successful dialogue tasks and
number of steps (turns) in each dialogue.

In this paper, we formalized information-seeking dialogue
as MDPs and applied deep reinforcement learning (DRL) to
find the optimal policy in dialogues. We used a double deep
Q-network (DDQN) to find a good policy that can increase
the rationality of a system’s claim quickly. We compared
our optimized dialogue strategy with existing strategies on
the basis of two heuristics, depth-first search and breadth-
first search. Experimental results show that the proposed
method outperformed existing dialogue strategies in several
information-seeking dialogue tasks for argumentation-based
dialogue systems.
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Related Work
Information-Seeking Process in Dialogue
Information-seeking, which is a kind of argumentation-
based dialogue, in particular frequently appears in the real
world (Walton and Krabbe 1995). It is a process of col-
lecting information in which participants in a dialogue ex-
change questions and answers to collect various facts. In
previous research, heuristic dialogue strategies which ex-
haustively examine all facts, have been proposed (Par-
sons, Wooldridge, and Amgoud 2002; Fan and Toni 2012;
2015). These strategies do not consider the communication
overhead cost, although, in real-world dialogue, it is impor-
tant to reduce the number of inquiries because, in general,
the available time for information-seeking dialogue is lim-
ited. In addition, it is demanding to construct a strategy for
such exhaustive examination based on heuristic rules be-
cause the rules usually depends on relations of collected
facts or domain-specific knowledge. In contrast, in this pa-
per, we present an automatic optimization method for build-
ing a dialogue strategy by considering the communication
overhead cost (time-pressure) and the success rate through
statistical learning based on RL.

Dialogue Strategy Optimization for
Argumentation-based Dialogue Systems
Some previous researchers applied RL to optimize dialogue
strategies for argumentation-based dialogue systems: per-
suasive dialogue systems (Hadoux et al. 2015; Rosenfeld
and Kraus 2016; Alahmari, Yuan, and Kudenko 2017) and
negotiation dialogue systems (Georgila and Traum 2011;
Papangelis and Georgila 2015). They focused on optimiz-
ing the dialogue strategy for presenting arguments given in
advance; nonetheless, ordinal argumentation-based dialogue
systems do not always have sufficient facts to construct ra-
tional arguments. In comparison, our research focuses on
optimizing the dialogue strategy for constructing new argu-
ments. It contributes to developing the ability of the systems
to construct such rational arguments adaptively.

Information-Seeking Dialogue for
Constructing Rational Arguments

We formulate a formal framework for information-seeking
dialogue for constructing rational arguments. We introduce
a formal definition of arguments, a method for constructing
arguments, a method for evaluating the rationality of method
of the arguments, and a dialogue protocol.

Formal Framework for Information-Seeking
Dialogue for Rational Argument Construction
Our proposed dialogue is a kind of an information-seeking
dialogue. An outline of the information-seeking process is
shown in Figure 1. Questioner Que tries to provide a ratio-
nal argument including a certain claim but it does not have
enough supporting facts. In the dialogue, Que asks answerer
Ans questions to collect supporting facts. Ans provides facts
if it knows, i.e., a fact is contained in its own knowledge
KA. Que updates its knowledge KQ with the facts that Ans

Figure 1: Framework of information-seeking dialogue for
constructing rational arguments.

provides. The dialogue continues until Que constructs an ar-
gument with enough rationality.

An argument 〈Φ, α〉 consists of a claim α and its sup-
port Φ. Here, Φ is a set of facts and inference rules. For-
mally, facts and inference rules are defined by logical ex-
pressions. Given logical expressions p1...pn, q satisfying
p1∧ ...∧ pn→ q, a fact is represented by a logical expression
with n = 0 (i.e., q), and the inference rule is a logical expres-
sion with n 6= 0 (i.e., p1→ q). Fact q can be substituted with
an assumption when the fact is necessary for an argumenta-
tion even if it is missing (Dung, Kowalski, and Toni 2009).

Figure 2 shows an example of an argument. In this ex-
ample, α is q1 (yellow rounded box), and Φ is a set of two
facts (q3 and q4), two assumptions [asm(q2) and asm(q5)]
and two inference rules (l1 and l2). Here, asm indicates that
a fact is an assumption. In addition, two inference rules, l1
and l2, are also contained in the argument. l1 means that fact
q1 is built if we have observed three facts, q2, q4, and q5,
and l2 means that fact q3 is built if we have observed fact q2.
Note that two of the facts, q2 and q5, are not contained in
KQ, and, thus, assumptions are used instead of them.

Given a claim α and Que’s knowledge KQ, the argument
〈Φ,α〉 is constructed by defining Φ as Φ = KQ∪H, where,
H is a set of assumptions. H is interpolated as:

arg minH∈H E({α}∪KQ∪H),

s.t., KQ∪H |= α,{α}∪KQ∪H 6|=⊥.

Here, H is a set of all possible hypothesis candidates1. E
is a cost function of an abduction model, and E({x,y, . . .})
explains the plausibility of observing x,y, . . . at the same
time (Charniak and Shimony 1990). E is also used in calcu-
lating the rationality of the argument R(Φ,α). We will give
details on the cost function and rationality in the next sec-
tion.

1|= means that the right term can be derivable from the left term,
and ∪ means the union of sets. In addition, unnecessary inference
rules in KQ for deriving α are excluded from Φ.



Figure 2: Example of questioner’s argument.

In our proposed dialogue, given α , a dialogue proceeds
by repeating the following. Que asks Ans about a fact, Ans
returns a corresponding fact q if the fact is in KA, Que adds
q to KQ (KQ ← KQ ∪ q), and Que constructs the argument
and evaluates its rationality. If we process the dialogue with
the example of Figure 2, α is given as q1. When Que asks
Ans “Did not the old man, who lived near the scene of the
murder, hear any loud noises?” to collect q5, which is nec-
essary to support α for inference rule l1, Ans returns q5 as
the answer. Then, Que updates KQ according to the answer
(KQ ← KQ ∪ q5). Note that only if the corresponding fact
to the question, such as q5, is included in KA, Ans return
the fact. This loop is repeated until the system successfully
constructs a rational argument or the number of questions
reaches the upper limit.

Evaluation Function of Rationality

We define the rationality of arguments following an existing
piece of work (Ovchinnikova et al. 2014):

R(Φ,α) = (min
H ′

E({α}∪H ′)+min
H ′′

E(KQ∪H ′′))

−E({α}∪Φ). (1)

We use a cost function that is used in weighted abduction
for E (see (Inoue and Inui 2011) for more details), and it
represents the plausibility of arguments of E occurring at
the same time (Charniak and Shimony 1990). The smaller
E(x) gets, the more plausible x occurring is; thus, equation
(1) describes how much KQ explains the situation, where a
fact α and those included in KQ occur at the same time. To
calculate E, we use Phillip2, an open source fast abductive
reasoner.

2https://github.com/kazeto/phillip

Optimization of Information-Seeking Dialogue
Strategy based on Reinforcement Learning

In this section, we first describe the formulation of the
information-seeking dialogue for constructing rational argu-
ments, on the basis of MDPs; then, we describe how to apply
deep reinforcement learning to the formalized information-
seeking dialogue to find the optimal strategy efficiently.

Formulation based on MDPs
In this work, st ∈ S, at ∈ A(st) and rt ∈R denote the internal
state of Que, the action taken by Que, and the reward for Que
at time-step t, respectively. We also define Φt as a support of
the argument at step t.

at corresponds to the question of Que to Ans. The action
space A(st) at step t is a list of candidates of facts, and at
is expressed as an index for accessing an element in the list.
The size of the action space is equal to the number of possi-
ble supporting facts, e.g., four in the case of Figure 2. In this
work, once Que selects at , Que can not take the same action
after step t (A(st+1) = (A(st)\{at})).

st is composed of an action history record, collected facts,
and the rationality of the argument at step t, and s0 repre-
sents the initial state of the system. “Action history record”
is the history of actions that Que has taken by step t, which is
represented as a binary vector vh,t ∈ {0,1}|A(s0)|. It is neces-
sary for avoiding selecting a question that has been already
asked. “Collected facts” {q1,q2, ...,qt ′}(t ′ ≤ t) are facts that
Que has collected from Ans. We use bag-of-facts (BoF) to
represent collected facts. BoF is a representation similar to
bag-of-words (BoW) that expresses collected facts with bi-
nary vector vqt . The size of the vector is equal to the number
of all possible facts. As, in the case of Figure 2, there are
four possible facts, q2, q3, q4, and q5, the size of the BoF
vector is four. The initial element of each dimension of the
vector is set to zero, and once a fact is collected, the ele-
ment corresponding to it is updated to one. “Rationality” at
step t is calculated by our rationality function R(Φt). The
scalar value of the rationality is simply converted to one di-
mensional vector, vR,t = [R(Φt)]. Finally, we concatenate the
proposed three features as one vector. Thus, the state st at
time t is defined as:

st = [vh,t ⊕ vq,t ⊕ vR,t ]. (2)

Note that ⊕ represents a concatenation of vectors.
A reward, rt , is given to encourage Que to collect facts in

order to construct more rational arguments as fast as possi-
ble. Formally, the reward is defined as:

rt =

{
rtime + rgoal (ΘR ≤ R(Φt )
rtime (otherwise) ,

where rtime and rgoal represent a time pressure penalty and
goal reward, respectively. The time pressure penalty is con-
stantly fed as a time-lapse to value dialogues with short
steps. The rewards are designed to encourage the effective
collection of facts for a rational argument. A goal reward is
fed if Que can construct an argument with higher rational-
ity than a given threshold ΘR by the maximum number of
dialogue steps (Tlimit).



Optimization with Double Deep Q-Network
We consider strategy π(a|s) that gives the probability of se-
lecting an action a ∈ A(s) given a state s ∈ S. The objective
of reinforcement learning is to find the optimal strategy π∗

that maximizes expected future rewards.
To find π∗, we use a double deep Q-network (DDQN).

DDQN (Van Hasselt, Guez, and Silver 2016) is one of the
deep RL methods based on Q-learning (Watkins and Dayan
1992). The algorithm introduces double Q-learning (Hasselt
2010) into a deep Q-network (Mnih et al. 2015). DDQN up-
dates the action-value function Q to find π∗. Q is a function
that returns the expected future reward for a pair of st and at .
DDQN uses a neural network (Q-network) as Q. Given tran-
sitions 〈st ,at ,rt+1,st+1〉 sampled from the environment, the
Q-network is updated to minimize the difference between a
target signal, Y DDQN

t , and its prediction. Y DDQN
t is given as:

Y DDQN
t = rt+1

+ γQ(st+1,arg max
a′∈A

Q(st+1,a′;θt);θ
−
t ). (3)

Here, both θt and θ
−
t are parameters of neural networks at

t. θt is used for both selecting actions and calculating target
values, while θ

−
t is used only for calculating target values. In

general, during the learning, 〈st ,at ,rt+1,st+1〉 are collected
by agents in accordance with ε-greedy exploration, in which
agents choose an action at from A(st), randomly selecting
with probability ε or by following arg maxat∈A(st )Q(st ,at)
with probability 1− ε . Once the update of Q converges to
the optimal Q∗, π∗ is given by arg maxat

Q(st ,at).
When we apply DDQN, it is necessary to build a simu-

lator that outputs the next state st+1 given the current state
st and the action at . We build an answerer simulator, which
returns the required fact if it is included in the knowledge
KA; if otherwise, it answers with “I don’t know” and returns
nothing. KA is given at the beginning of the dialogue.

Experiments
We conducted experimental evaluations to investigate the ef-
fectiveness of dialogue strategies optimized by RL in two
different dialogue domains: legal discussion and compliance
violation detection.

We prepared a large number of facts and inference rules
for KA and KQ during training and evaluation 3. In this sec-
tion, we first describe the prepared facts for KAs and infer-
ence rules for KQs and then perform experiments with them
and discuss the results.

Legal Discussion Domain
We prepared 550 KAs and 72 inference rules for KQ gener-
ated from an original argumentation dataset, “Twelve Angry
Men dataset (Cabrio and Villata 2014)4.”

3Prepared facts and inference rules for KA and KQ are
available at: https://github.com/HiKat/Data_for_
AAAI-DEEPDIAL19

4http://www-sop.inria.fr/NoDE/NoDE-xml.
html#12AngryMen

Figure 3: Fact graph (FG) made from 122 facts and 72 infer-
ence rules extracted from “Twelve Angry Men dataset”

This dataset records deliberative arguments (utterances)
between the 12 jurors of a homicide trial, and all of the
arguments are paired into 80 pairs, and each pair is anno-
tated with their relationship: support/attack. We formally ex-
tracted facts and inference rules from the dataset in accor-
dance with the following steps.

1. Consider two utterances as two facts, utt1 and utt2
respectively.

2. Consider the relationship between utt1 and utt2 as an
inference rule, utt1→ utt2.

As a result, we extracted 160 facts and 80 inference rules
by following the procedure above. In addition, to compli-
cate the information-seeking task, we combined these ex-
tracted rules into more complicated ones. For example, we
combined three rules, utt1→ utt4, utt2→ utt4, and
utt3→ utt4, into one complicated rule,

utt1∧utt2∧utt3→ utt4.

Further, removing duplicate facts and inference rules, 122
facts (including a man claim ”The boy is not guilty”) and 72
inference rules remained.

All of the 72 inference rules were given to KQ at the be-
ginning of each dialogue, and 121 action candidates cor-
responding to all facts except the main claim were de-
fined for Que. For the training and evaluation, each of 550
KAs was constructed with 20 randomly chosen facts from
the 121 facts except the main claim. 500 of the KAs were
used for training to find an optimal strategy, and the oth-
ers were used for evaluation. At the beginning of each
dialogue, the answerer Ans was initialized with one ran-
domly chosen KA, and the Que aimed to construct an ar-
gument that claims the fixed fact α “The boy is not guilty
(The-boy-is-innocent)” by drawing facts repeatedly
from Ans. The rationality R(Φ) of 〈Φ,α〉 will increase
through the information-seeking dialogue if the system has
a good dialogue strategy.

To optimize and evaluate Que’s strategy, we prepared a
simulator for Ans. The simulator returned one fact corre-
sponding to Que’s inquiry if the inquired fact existed in KA.



Table 1: Upper three lines show results for three baseline
heuristic strategies, random, depth-first search (DFS), and
breadth-first search (BFS), strategies, and proposed strategy
based on DDQN in legal discussion domain. Lower three
lines show results in compliance violation detection domain.
Each cell shows average result of five models generated in
parallel and their one standard error.

Average
Score

Completed
Episodes

Average
Steps

Legal Discussion Domain

Random -2.684
(1.88)

3.6
(0.92)

9.884
(0.04)

Depth-first search 7.176
(8.46)

8.4
(4.14)

9.624
(0.18)

Breadth-first search 0.66
(3.30)

5.2
(1.61)

9.74
(0.08)

DDQN 45.456
(5.74)

26.6
(2.75)

7.744
(0.26)

Compliance Violation Detection Domain

Random -10
(0.00)

0
(0.00)

-10
(0.00)

Depth-first search -10
(0.00)

0
(0.00)

-10
(0.00)

Breadth-first search -10
(0.00)

0
(0.00)

-10
(0.00)

DDQN 65.304
(2.37)

35
(1.13)

4.696
(0.12)

Compliance Violation Detection Domain

We also prepared 250 KAs, and 106 inference rules as KQ
from a compliance violation detection dataset. We gener-
ated this dataset by gathering thousands of Japanese mail
threads from role-played experiments between pairs of sub-
jects. Each subject played a role as a worker for a certain
company or government, and he or she made plans together
with a partner in compliance violation matters, such as bid-
rigging or making a cartel. After the role-plays, we extracted
250 mail threads, each of which was composed of about
10 mails. We generated each KA from each mail thread by
converting each mail thread into 100 ∼ 600 facts by us-
ing Japanese semantic analysis tools (ChaPAS5, KNP6 and
zunda7) removing several facts that has nothing to do with
compliance violation. Finally, each mail thread was con-
verted to 20∼30 facts, and 3782 kinds of facts remained in
all of the 250 threads in total.

The 106 inference rules were manually created to de-
tect compliance violations from each mail thread. For
example, they included the inference rule “When x is
a competitor of y and x provides the price informa-
tion to y, x and y form a cartel./competitor(x, y) ∧
provide price information(x, y) → cartel(x, y).” All of the
rules were given to KQ at the beginning of each dialogue.
We used 100 to 250 KAs for training and the others for the
evaluation.

5https://sites.google.com/site/yotarow/
chapas

6http://nlp.ist.i.kyoto-u.ac.jp/?KNP
7https://jmizuno.github.io/zunda/

Experimental Settings
We compared the optimized policy based on RL with three
baselines strategies based on heuristics in each of the two
domains. In this section, we give details on the compared
strategies and their settings as follows.
Random Strategy: A random selection strategy. The sys-
tem randomly asks Ans about the existence of facts.
Depth-first Search (DFS) Strategy: A heuristic strategy
based on depth-first search (DFS). Que, with this strategy,
takes an action in depth-first order across a fact graph (FG).
In a FG, nodes are facts, and undirected edges are inference
rules. For example, if we have an inference rule, p1∧ p2→ q,
three nodes, p1, p2, and q, are connected with two undi-
rected edges, (p1,q) and (p2,q). A part of the FG we used in
the experiment is shown in Figure 3. We consider the node
corresponding to Que’s claim as a claim node, which is the
starting node of DFS. During DFS, Que randomly selects
which adjacent node of the current node to ask next. This
strategy is basically the same as the existing work proposed
by (Fan and Toni 2012).
Breadth-first Search (BFS) Strategy: A heuristic strategy
based on breadth-first search (BFS). This strategy also uses
the FG as a DFS strategy; however, Que, with this strategy,
takes an action in breadth-first order across the graph. Note
that, Que, following this strategy, randomly selects one next
fact from nodes at the same depth.
DDQN: A strategy optimized with DDQN. In our experi-
ments, the DDQN uses the Q-network, which takes the pro-
posed feature vector (Eqn 2) as the input. The network has
two hidden nonlinear layers, each of which has 50 units fol-
lowed by a hyperbolic tangent. The network finally outputs
action-value function values with one linear layer. The ex-
ploration rate ε for the ε-greedy strategy was linearly an-
nealed from 0.1 to 0.01 during the first 2000 actions. The
discount rate γ was fixed to 0.95, and it was trained on 1000
episodes.

In this work, the rewards were set at rgoal = 100 and
rtime = −1.0. During training, Tlimit was set to 10. ΘR was
fixed to 0.7 for the legal discussion domain and 0.5 for the
compliance violation detection domain.

We trained strategies based on DDQN with simulated di-
alogues, where a simulated Ans played Que’s partner. At the
beginning of each simulated training dialogue, the KA for
Ans was randomly selected from 500 or 200 training KAs in
response to each domain. In the evaluation, we also used the
simulator; however, the KAs for Ans were selected from dif-
ferent 50 KAs in the test set. These strategies interacted with
the test set simulator for the evaluation. Note that there was
no big difference from conducting a dialogue with humans
because the operation of Ans is simple in this setting, that is
only answering regarding the existence of the inquiry.

Results
Table 1 shows the scores of the strategies that we compared.
We evaluated strategies in terms of “test score,” “completed
dialogues,” and “average steps.” “Test score” shows the av-
erages of cumulative rewards at the end of each test dia-
logue. “Completed dialogues” shows the number of evalu-



Table 2: We show example dialogue with strategy optimized with DDQN from evaluation. Each line of table shows each step
of interaction between system and answerer. First column shows step number of interaction. Second column shows speaker of
each step; “Sys” stands for system as questioner, and “Ans” stands for answerer. Others show each utterance of speaker and
rationality of system’s argument after collection, respectively. Answerer’s bold-faced utterance corresponds to fact that system
successfully collects.

Step Speaker Utterance Rationality
1 Sys Did not the woman across the street see the murder committed?

Ans The woman across the street did not see the murder committed. 0.1
2 Sys Did not the old man hear the kid yell, “I’m gonna kill you”?

Ans The old man did not hear the kid yell, “I’m gonna kill you”. 0.4
3 Sys Is the old man a liar?

Ans I do not know. 0.4
4 Sys Did not the boy crouch down and stab a taller man in the chest?

Ans I do not know. 0.4
5 Sys Did not the woman across the street see the boy stab his father?

Ans I do not know. 0.4
6 Sys Did not the boy admit buying the knife?

Ans The boy did not admit buying the knife. 0.7

ated dialogues, in which Que successfully constructed a ra-
tional argument whose rationality exceeded the given thresh-
olds within the 10-step limit (i.e., Tlimit ). “Average steps” de-
scribes the average of the number of steps required to finish
dialogues. The upper part of the table shows the results for
the legal discussion domain, and the lower one shows the re-
sults for the compliance violation detection domain. The re-
sults show that the proposed DDQN based strategy achieved
the best score in both domains. For further analysis, in legal
discussion domain, we investigated the relationship between
the upper time limit of each evaluated dialogue and the num-
ber of completed dialogues, as shown in Figure 4. This figure
indicates that the strategy optimized with DDQN collected
facts that support a claim much more quickly than the other
handcrafted strategies.

Figure 4: Comparison of number of completed dialogues
where questioner constructed rational arguments with each
strategy within time limit in legal discussion domain. Hor-
izontal axis shows upper limit of questions for each ques-
tioner (Tlimit ), and vertical axis shows number of completed
dialogues. Note that the maximum number of dialogues was
50.

Table 2 shows a dialogue example generated by the

DDQN strategy. Each question written in English are pre-
pared by hand with one-to-one mapping from an answer
(fact) to a question. As shown in the example, the questioner
uses the strategy based on DDQN to collect the fact “The
boy did not admit buying the knife” at the early stage of
the dialogue. In the same setting as in Table 2, we observed
that both the BFS and DFS strategies collected these facts in
a later stage, and, as a result, these strategies required three
extra steps to complete the dialogue. The aforementioned
facts were frequently contained as supports in a rational ar-
gument, i.e., an argument with higher rationality than a given
threshold, in these experiments. We found that the DDQN
strategy tried to collect such frequently contained facts at an
early stage in many dialogue examples.

Conclusion
In this paper, we proposed formulating information-seeking
dialogue for constructing rational arguments with MDPs.
We also proposed dialogue strategy optimization based on
DDQN. Experimental results showed that strategies opti-
mized with DDQN achieved the best scores in terms of
effective information collection to construct rational argu-
ments for the main claims of the system.

As future work, considering language understanding er-
rors or the deceptive response of adversarial Ans’s are im-
portant. To deal with these problems, we can expand our
proposed MDPs formulation to a formulation based on par-
tially observable Markov decision processes (POMDPs).
Furthermore, we will extend our formulation to enriched
information-seeking situations, where 1) Ans can provide ar-
guments based on its own knowledge (inference rules and
facts) as well as facts, and 2) Que can challenge Ans to get
further information about the provided arguments.
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