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Abstract

Meta-reinforcement learning (RL) addresses the
problem of sample inefficiency in deep RL by us-
ing experience obtained in past tasks for a new
task to be solved. However, most meta-RL meth-
ods require partially or fully on-policy data, i.e.,
they cannot reuse the data collected by past poli-
cies, which hinders the improvement of sample
efficiency. To alleviate this problem, we pro-
pose a novel off-policy meta-RL method, em-
bedding learning and evaluation of uncertainty
(ELUE). ELUE is characterized by the learn-
ing of a shared feature embedding space among
tasks. It learns beliefs over the embedding space
and a belief conditional policy and Q-function.
This approach has two major advantages. It can
evaluate the uncertainty of tasks, which is ex-
pected to contribute to precise exploration, and
it can also improve its performance by updating
a belief. We show that our proposed method out-
performs existing methods through experiments
with a meta-RL benchmark.

1. Introduction
Deep reinforcement learning (DRL) has shown superhu-
man performance in several domains, such as computer
games and board games (Silver et al., 2017; Berner et al.,
2019). However, conventional DRL considers only learn-
ing for a single task and does not reuse experience from
past tasks. This is one of the causes of sample inefficiency
in conventional DRL.

Meta-learning has been proposed to overcome this prob-
lem (Schmidhuber et al., 1996). Meta-learning is a class of
methods for learning how to efficiently learn with a small

1National Institute of Advanced Industrial Science and Tech-
nology, Tokyo, Japan 2NEC Central Research Laboratories,
Kanagawa, Japan 3RIKEN Center for Advanced Intelligence
Project, Tokyo, Japan 4The University of Tokyo, Tokyo, Japan.
Correspondence to: Takahisa Imagawa <imagawa.t@aist.go.jp>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

amount of data on a new task by using previous experi-
ence. Meta-learning has two phases: meta-training and
meta-testing. In meta-training, the agent prepares for learn-
ing in meta-testing. In meta-testing, the agent is evaluated
on the basis of its performance on the task to be solved. Al-
though meta-learning aims to improve sample efficiency in
meta-testing, the sample efficiency in meta-training is also
important in terms of computational cost (Mendonca et al.,
2019; Rakelly et al., 2019).

Several meta-learning methods, such as
MAML (Finn et al., 2017) and Reptile (Nichol et al.,
2018), have been proposed. These methods learn to reduce
loss after parameters are updated (e.g., weights of neural
networks) over several steps. Finn et al. (2017) showed
that the sample efficiency of MAML in meta-testing
is improved compared with that of naive pretraining.
However, most reinforcement learning (RL) applications
of these methods need on-policy data (Mendonca et al.,
2019), while off-policy methods are more sample efficient
because they can reuse data collected by old policies. In
addition, the performance of the learned initial parameters
in meta-testing may not be good in some cases until the
parameters are updated. For example, there are tasks
where an agent aims to reach a goal as fast as possible,
and the tasks differ in terms of goal positions. Let us
assume that there are two tasks in meta-training whose
goals are in opposite directions from the initial position
of the agent; then, the well-trained policies for the tasks
require contradicting actions. Thus, in this case, even if
the meta-test task is one of the two tasks, the performance
may be poor before the parameters are updated.

PEARL (Rakelly et al., 2019) is another kind of meta
learning method that learns how to infer task information
in meta-training and uses it in meta-testing. It is based
on an idea called “amortized inference” (Srikumar et al.,
2012; Stuhlmüller et al., 2013; Liu and Liu, 2019). In this
setting, it is assumed that there are many similar tasks to
solve and that the agent can offload part of the computa-
tional work to shared precomputation (Stuhlmüller et al.,
2013). Because of inference, PEARL generally needs less
data to improve performance in meta-testing than methods
that update the parameters of neural networks. In addi-
tion, PEARL’s policy and Q-function are trained off-policy,
and this also generally further improves sample efficiency.
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In some experiments, PEARL showed better sample effi-
ciency than MAML (Rakelly et al., 2019).

In this paper, we extend the idea of PEARL and propose
a novel meta-RL method, embedding learning and evalu-
ation of uncertainty (ELUE), which has the following fea-
tures:

Off-policy embedding training
In PEARL, policy training is based on an off-policy
method, but the training for task embedding, which is
used for calculating distribution over tasks, depends
on what the current policy is, i.e., it is on-policy. By
dividing the training into training for task embedding
and that for policies, we propose a fully off-policy
method. Thanks to policy-independent embedding,
the training objective is expected to be stable, and data
collected by past policies can be reused.

Policy and Q-function conditioned by beliefs over tasks
PEARL introduces a distribution over tasks, but both
its policy and Q-function depend on a task variable
sampled from the distribution. After the task variable
is sampled, the variable contains no information
on the uncertainty over the tasks. Instead, in our
proposed method, the policy and Q-function are
conditioned on the belief over tasks, which can be
used to evaluate uncertainty. This leads to more
precise exploration as the values that reduce task
uncertainty are evaluated.

Combination of belief and parameter update
PEARL does not update the parameters of the policy
and Q-function in meta-testing. Thus, PEARL may
fail to improve the performance if there are large gaps
between the tasks in meta-training and those in meta-
testing. To alleviate the gap, our method performs not
only inference but also parameter updating.

We compare the performances of PEARL and ELUE
through experiments in the Meta-World (Yu et al., 2019)
environment. We show that the proposed method performs
better than PEARL.

2. Preliminaries
Markov decision processes (MDPs) are models for rein-
forcement learning (RL) tasks. An MDP is defined as a
tuple (S,A, T,R, ρ), where S and A are the state and the
action spaces respectively, R : S × A × R → [0, 1] is a
reward function that determines the probability of the re-
ward amount and T : S × A × S → [0, 1] is a transition
function that determines the probability of the next state. ρ
is the initial state distribution. Let us denote the policy as
π, which is the probability of choosing an action at each

state. The objective of RL is to maximize the expected cu-
mulative reward, which is discounted by γ, by changing the
policy.

We assume that each task in meta-training and meta-testing
can be represented by an MDP, where S andA are the same
among tasks. In addition, we assume that tasks are the same
when they differ only in ρ because the difference in ρ does
not change the optimal policy. Thus, under these assump-
tions, a different task means a different T or R.

In our problem, it is assumed that the reward and
the transition function are not observable directly. We
treat this problem as a partially observable MDP
(POMDP) (Humplik et al., 2019; Zintgraf et al., 2020) and
introduce a probability over R and T , which is called a
“belief”. For clarity, let us assume that R and T are pa-
rameterized by φ and denote them as Rφ and Tφ. It is
known that a POMDP can be transformed into a belief
MDP whose states are based on beliefs and that the opti-
mal policy of the belief MDP is also optimal in the original
POMDP (Kaelbling et al., 1998). We denote a history as
ht := (s0, a0, r0, s1, . . . , st), where sτ ∈ S , aτ ∈ A, rτ ∈
R are the state, the action, and the reward at time τ , respec-
tively. In our problem, a belief at time t is P (φ|ht), and
the state of the belief MDP at time t is s+t = (st, P (φ|ht)),
which is often referred to as a hyper-state. The objective
of our problem is maximizing Eh∞ [

∑∞
t=0 γ

trt] by chang-
ing a policy which is conditioned on a hyper-state. In our
problem, the belief is updated by observations:

P (φ|ht+1)

∝ P (φ)

t∏
τ=0

Rφ(sτ , aτ , rτ )Tφ(sτ , aτ , sτ+1) (1)

∝ P (φ|ht)Rφ(st, at, rt)Tφ(st, at, st+1). (2)

However, in general, the exact calculation of this belief up-
date is intractable, so the existing methods approximate
beliefs and avoid the calculation (Humplik et al., 2019;
Zintgraf et al., 2020; Igl et al., 2018; Kapturowski et al.,
2019). In the next section, we introduce the approximated
belief update and other parts of our method.

3. Method
In this section we introduce our method, embedding learn-
ing and evaluation of uncertainty (ELUE), which learns
how to infer tasks and how to use beliefs based on embed-
dings of task features. In addition, for alleviating the gap
between meta-training and testing, which may prevent im-
provements being made if only belief updating is done, it
also learns the adaptation of learned policy and Q-function
through the updating of their parameters by using meta-test
data. We show a sketch of the architecture of our networks
in Figure 1.
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Figure 1: A sketch of the architecture of networks in ELUE. The
networks in the blue box are for the embedding, consisting of an
encoder (left) and decoders (right), which are introduced in Sec-
tion 3.1. The input of the encoder is a set of ct = (st, at, rt, st+1)
and it outputs the parameters of a Gaussian distribution, as intro-
duced in Equation (6). A part of the inputs of the decoders, z,
is sampled from the Gaussian distribution, and the decoders pre-
dict rewards and next states. In the red box, there are networks
for the policy, V-function, and Q-function, which are trained in
a similar way to soft actor-critic (Haarnoja et al., 2018). The de-
tails are described in Section 3.2. These networks are conditioned
on a belief and use the outputs of the encoder as the belief. Only
the networks in the red box are adapted in meta-testing, while all
of the networks are pretrained in meta-training, as discussed in
Section 3.3.

3.1. Learning Embedding

In meta-training, ELUE learns natural embeddings for task
features. In this section, we introduce its theoretical back-
ground.

We formulate the embedding learning problem as fol-
lows. There is a latent task variable z, whose density
is p(z), and let us assume that the reward rt and next
state st+1 are sampled from a parameterized model
pϕ(rt, st+1|st, at, z), which is shared across tasks.
If ht is observed frequently, a reasonable model is
expected to give ht a high density. Thus, in propor-
tion to the frequency of ht, maximizing the density,
log
∫
p(s0)

∏t−1
τ=0 pϕ(rτ , sτ+1|sτ , aτ , z)π(aτ |hτ )p(z)dz

leads to a reasonable model. However, the objective
depends on the initial distribution and the current policy.
In terms of belief estimation, they do not contribute as
shown in proportional expression (1). Thus, instead of the
density, we consider the maximization of the ELBO of the
following value.

log

∫ t−1∏
τ=0

pϕ(rτ , sτ+1|sτ , aτ , z)p(z)dz (3)

We introduce a parameterized variational distribution qϕ,

and the ELBO is:

log

∫ t−1∏
τ=0

pϕ(rτ , sτ+1|sτ , aτ , z)p(z)dz (4)

≥ Eqϕ(z|ht)[
∑
τ

log pϕ(rτ , sτ+1|sτ , aτ , z)]

−DKL(qϕ(z|ht)||p(z)). (5)

We maximize this ELBO in a similar way to a conditional
variational autoencoder (Sohn et al., 2015), i.e., optimizing
the parameters of encoder q and decoder p. The sum of log-
likelihood in the ELBO is permutation-invariant in terms
of time t of tuple ct := (st, at, rt, st+1). We introduce
the following structure so that qϕ(z|ht) is also permutation-
invariant.

As shown in Zaheer et al. (2017), a function q(X) is in-
variant to the permutation of instances in X , iff it can be
decomposed into the form g(

∑
x∈X f(x)). We follow this

fact and, instead of history conditional posterior qϕ(z|ht),
we use a posterior conditioned on a set of tuples,

qϕ(z|c0:t−1) := N

(
z; gϕ

(
t−1∑
τ=0

fϕ(cτ )

))
, (6)

where N (·) is a Gaussian distribution, and
gϕ(
∑t−1

τ=0 fϕ(cτ )) outputs the parameters of the dis-
tribution. Note that qϕ(z|c0:t−1) can be used as an
approximated belief over z, i.e., bt(z) and that it can be
updated with low computational cost.

Let us denote a replay buffer of tuples of task i as Di and a
set of sampled tuples cit1 , c

i
t2 , . . . c

i
tk

from Di as cit1:k . We
define the loss of embedding, Lembed(ϕ), as

Ei,cit1:k
[−Eqϕ(z|cit1:k )

[
∑

cτ∈cit1:k

log pϕ(rτ , sτ+1|sτ , aτ , z)]

+DKL(qϕ(z|cit1:k)||p(z))]. (7)

Note that this loss function does not depend on the policy.
Thus, it can reuse data in the replay buffer, which are col-
lected by past policies, and the amount of data in the replay
buffer is generally large. Moreover, because of the random
sampling of tuples, this training depends less on actual tra-
jectories than naive trajectory-based training and allows for
more diversity in data sets. Those features can contribute
to stability of the training objective.

In our implementation, we use two decoders, whose out-
puts are the probability of reward, pϕ(rt|st, at, z), and that
of next state, pϕ(st+1|st, at, z).

3.2. Learning Belief-Conditional Policy and
Q-Function

ELUE learns a belief-conditional policy and Q-function in
meta-training. To clarify the background of ELUE, we
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Algorithm 1 Meta-training

1: A set of meta-training tasks, T is given
2: while not done do
3: Sample tasks from T
4: Initialize beliefs
5: for i ∈ the sampled tasks do
6: for step in data collection steps do
7: Gather data from task i by policy π(·|si, bi)
8: Update belief bi and replay buffer Di

9: end for
10: end for
11: for step in training steps do
12: Sample tasks from T
13: Calculate Lembed for the sampled tasks, shown as

formula (7)
14: Update parameters to minimize Lembed

15: Calculate Lactor and Lcritic for the sampled
tasks, shown as formulae (18), (19), and (20)

16: Update parameters to minimizeLactor andLcritic

17: end for
18: end while

introduce the control as a probabilistic inference frame-
work (Levine, 2018). Following the settings in the refer-
ence, we assume a RL problem with finite horizon H . We
denote the event that the optimal action is chosen at time
t as Ot, Oτ for all τ in t ≤ τ ≤ H as Ot:H and assume
p(Ot|rt) := exp(rt). Let us assume that a probabilistic
model such that p(s+H ,Ot:H−1|s+t ) can be represented as

p(at|s+t )p(rt, st+1|s+t , at)p(Ot|rt)p(s+H ,Ot+1:H−1|s+t+1),
(8)

where p(rt, st+1|s+t , at) =
∫
p(rt, st+1|st, at, z)bt(z)dz

and p(at|s+t ) is the action prior, which is assumed to be a
uniform distribution over the action space. We introduce a
variational distribution of future outputs,

q(s+H |s
+
t ) = π(at|s+t )p(rt, st+1|s+t , at)q(s+H |s

+
t+1). (9)

At time t, ELUE maximizes the ELBO of log p(Ot:H |s+t ).
Its ELBO is

log p(Ot:H |s+t ) (10)

≥ Eq(s+H |s+t )

[
log

p(s+H ,Ot:H |s+t )
q(s+H |s

+
t )

]
(11)

≥ Eq(s+H |s+t )

[
H∑
τ=t

log p(Oτ |rτ ) + log
p(aτ |s+τ )
π(aτ |s+τ )

]
. (12)

p(at|s+t ) is assumed to be a uniform distribution over the
action space and is thus a constant. Therefore, let us re-

Algorithm 2 Meta-testing

1: A meta-test task is given
2: for j ∈ the number of iteration steps do
3: for step in data collection steps do
4: Gather data from meta-test task by policy

π(a|s, b)
5: Update belief b and replay buffer D
6: end for
7: if j ≥ the number of iterations to start updating the

parameters then
8: for step in training steps do
9: Calculate modified Lactor and Lcritic for the

task, shown as formulae (22), (19), and (20)
10: Update parameter to minimize modified Lactor

and Lcritic

11: end for
12: end if
13: end for

move the constant, then, the ELBO is

Eq(s+H |s+t )

[
H∑
τ=t

rτ − log π(aτ |s+τ )

]
. (13)

This value is the expected total return from s+t with an en-
tropy bonus as in soft actor-critic (SAC) (Haarnoja et al.,
2018), which is one of the most sample efficient off-policy
RL method.

By following the control as inference scheme, we derive
an objective like SAC. We modify the problem to that with
an infinite horizon, γ ≤ 1, and a coefficient of the entropy
bonus, α, following SAC. As a result, the following Bell-
man equation is derived:

Qπ(s+t , at) := Ep(rt,st+1|s+t ,at)
[rt + γV π(s+t+1)], (14)

where

V π(s+t ) = Eq(s+∞|s+t )[

∞∑
τ=t

γτ−t(rτ − α log π(aτ |s+τ ))]

(15)

= Eπ(at|s+t )[Q
π(s+t , at)− α log π(at|s+t )].

(16)

We follow the same way as SAC and update the policy,
Q-function, and V-function. Let us denote a belief con-
ditioned on the tuple set cit1:k−1

as bi and the belief from
bi updated by an additional tuple, citk , as b′i. For sim-
plicity, we abbreviate the subscript tk in citk and denote it
as (si, ai, ri, s′i). ELUE minimizes the following losses:
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Lactor(θπ) :=

Ei,cit1:k

[
DKL

(
πθπ (·|si, bi) ||

exp(QθQ(s
i, bi, ·))

Z(si, bi)

)]
(17)

= Ei,cit1:k

[
Eπ(a|si,bi)[α log πθπ (a|si, bi)−QθQ(s

i, bi, a)]
]
,

(18)

LQ
critic(θQ) := Ei,cit1:k

[(QθQ(s
i, bi, ai)− Q̂(si, bi, ai))2],

(19)

LV
critic(θV ) := Ei,cit1:k

[
(VθV (s

i)− V̂ (si))2
]
, (20)

where
Q̂(si, bi, ai) = ri + γVθ̄V

(
s′i, b′i

)
,

V̂ (si) = Eπ(a|si,bi)[QθQ(s
i, bi, a)− α log πθπ (a|si, bi)],

and θ̄V is a parameter vector that is updated by, θ̄V ← (1−
λ)θ̄V + λθV . We show the procedures of our method in
meta-training in Algorithm 1.

We introduce details on the implementation of our method.
First, to reduce the computational cost, we avoid naively
allocating one random sampled tuple set cit1:k−1

and belief
to one additional tuple citk . This is because the amount of
data to be sampled is large and time consuming. Therefore,
additional tuples share the same tuple set. Second, to train
in a variety of situations in terms of the amount of data nec-
essary to infer a task, we randomly sample k, the number
of tuples in cit1:k−1

.

3.3. Adaptation in Meta-Test

In meta-testing, ELUE collects data based on the policy
conditioned on a belief. The belief is updated at every
time step. After updating the belief enough times, our
method updates the parameters of neural networks. In
meta-testing, there are differences in the parameter update
in meta-training:

1. The parameters for embedding, ϕ, are fixed in meta-
testing to avoid catastrophic forgetting (French, 1999)
about what it was learned in meta-training. Naive updat-
ing the parameters about embedding in meta-testing leads
to catastrophic forgetting because the number of tasks in
meta-testing is one, which means that the decoder can re-
construct the reward and next state without the latent task
variable information, if the decoder is sufficiently trained
in meta-testing. If the output of the decoder is independent
from the latent task variable, only the second term of (7)
is relevant to the learning of the encoder, which means that
the encoder loss is minimized when its output is the same as

that of the prior, p(z). On the basis of these considerations,
we fix ϕ.

2. To avoid catastrophic forgetting of the learned policy,
we modify Lactor by adding a cross-entropy loss between
the policy learned in meta-testing and that in meta-training.
More concretely, the total actor loss is

Lactor(θπ)− Ei,cit1:k

[
Eπ(a|si,bi)[α log πinit(a|si, bi)]

]
(21)

= Ei,cit1:k
,a

[
α log

πθπ (a|si, bi)
πinit(a|si, bi)

−QθQ(s
i, a, bi)

]
,

(22)

where πinit is the policy before its parameters are updated
in meta-testing. This objective is expected to contribute to
not only avoiding catastrophic forgetting but also improv-
ing performance. The entropy of a policy means the KL
divergence between the policy and uniform policy if the
constant part is ignored. Thus, the performance is expected
to be better when using a well-trained policy instead of a
uniform one to calculate the KL divergence. This modifi-
cation improved the performance, as shown in Figure 4.

We introduce pseudo code in Algorithm 2.

4. Related Work
In this section, we review existing methods related to our
method and discuss the differences between them.

Our method is inspired by PEARL, but there are essential
differences. First, PEARL has no decoder, and the en-
coder is trained to minimize the critic loss. It is a sim-
ple approach, but its embedding can change depending
on the current policy. It has been shown that the perfor-
mance of PEARL degrades when used with off-policy (i.e.,
not recent) data. Therefore, PEARL uses an additional
buffer for recent data to avoid the degradation; in con-
trast, our method can train the embedding using old data
and does not need an additional buffer. Second, PEARL
uses an encoder that can be represented as qϕ(z|ht) ∝∏t−1

τ=0N (z;µτ , σ
2
τ ) ∝ N (z;

∑t−1
τ=0

µτ
σ2
τ∑t−1

τ=0
1

σ2
τ

, 1∑t−1
τ=0

1
σ2
τ

), where

µτ and σ2
τ are the outputs of the neural network, fϕ(·),

whose input is cτ , and they are the mean and variance of
a Gaussian distribution. As discussed in Section 3.1, this
is not general form for encoder representation in terms of
permutation invariance among cτ , while our encoder is rep-
resented in a general form. Third, PEARL’s policy and Q-
function, π(s, z) and Q(s, a, z), where z is sampled from
q(z|ht), are z conditional, and z itself has no uncertainty
information. In comparison, ours are belief-conditional,
which has uncertainty information. Fourth, PEARL only
considers inference in meta-testing, while our method con-
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(a) basket-ball (b) dial-turn (c) pick-place

(d) reach (e) sweep-into (f) window-open

Figure 2: The comparison of learning curves. The vertical axis is moving average ± standard deviation of average episode rewards in
meta-testing and the horizontal axis is the number of time steps.

siders the updating of the parameters of neural networks.

VariBAD (Zintgraf et al., 2020) is more related to our
method. It considers embedding just like ours and be-
liefs over the embedding space. However, this is an on-
policy algorithm, and its sample efficiency is not as high as
PEARL. Zintgraf et al. (2020) compared the performances
of PEARL and variBAD after several rollouts in meta-
testing, where each algorithm was trained with the same
number of frames in meta-training, and they showed that
PEARL outperformed variBAD. In addition, its encoder is
based on recurrent neural networks whose input is simply
a history. Moreover, it only infers in meta-testing.

Humplik et al. (2019) proposed several methods for train-
ing a belief network over tasks. However, unlike ours, their
beliefs regard direct prediction, e.g., predicting the task ID,
and the parameters of the task. In addition, their encoder is
based on RNNs and fed histories naively.

Vuorio et al. (2019) proposed MMAML, which is an ex-
tension of PEARL. It is a combination of PEARL-like task
inference and MAML-like parameter updating. However,
this is an on-policy algorithm, and it does not consider the
uncertainty of tasks. Although combining our method and
MAML would be an interesting direction for future work, it
would not be straight-forward to combine a fully off-policy
algorithm and the MAML objective for better adaptation in

terms of parameter updating.

As for off-policy approaches, guided meta policy
search (Mendonca et al., 2019) is introduced as an off-
policy meta learning method. However, it is on-policy in
meta-testing. In addition, it is not based on amortized in-
ference.

5. Experiments
To examine the effectiveness of our method, we compared
the performance of PEARL and our method. The environ-
ment of the experiments was Meta-World with MuJoCo
2.0. Meta-World is a collection of robot arm tasks, and
there are 50 types of tasks and several benchmarks. We
followed the ML1 benchmark scheme, where a difference
in tasks means difference in goals. We chose six types of
tasks, basket-ball, dial-turn, pick-place, reach, sweep-into,
window-open, that were chosen from the types of meta-test
tasks of the ML10 benchmark1. Basket-ball is a task where
the agent dunks a basketball into a basket, and each task has
different basketball and basket positions. Dial-turn is a task
where the agent rotates a dial 180 degrees, and each task
has different dial positions. Pick-place is a task where the

1The names of the types of tasks in the Meta-World paper are
different from those of the Meta-World program. We refer to the
names of the program.
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(a) basket-ball (b) dial-turn (c) pick-place

(d) reach (e) sweep-into (f) window-open

Figure 3: Comparison of learning curve with inference of each algorithm. Vertical axis is moving average ± standard deviation of
average episode rewards in meta-testing. Horizontal axis is number of episodes.

agent picks and places a puck at a goal, and each task has
different puck and goal positions. Rearch is a task where
the agent reaches a goal position, and each task has differ-
ent goal positions. Sweep-into is a task where the agent
sweeps a puck into a hole, and each task has different puck
positions. Window-open is a task where the agent pushes
and opens a window, and each task has different window
positions.

For each type of task in meta-training, ten tasks were sam-
pled from the meta-training task distribution defined by
the ML1 benchmark. In meta-testing, one task was sam-
pled from the task distribution of meta-testing, which was
different from that of meta-training. We executed meta-
training three times, where each algorithm was trained with
the same number of time steps. For each learned networks,
meta-tests were executed three times. Meta-training was
executed for 300 iterations. We used trained networks at
the 290th iteration. The total number of time steps in meta-
training in the environment of each method was the same
(582,000 steps).

In the first experiment, we compared the learning curves
of the algorithms in meta-testing. In the experiment, each
algorithm updated the parameters of its learned networks.
The original PEARL algorithm does not consider param-
eter updates in meta-testing, so we revised it to alleviate
the differences between tasks in meta-training and meta-

testing. We compared ELUE, a naive extension of PEARL
(“PEARL”), and PEARL with modifications (“PEARL-
posterior”). Also, to clarify the amount of improvement
with our method, we executed SAC, which learns from
scratch in meta-testing. “PEARL” is a naive application of
the original PEARL’s meta-training procedures for param-
eter updates in meta-testing. “PEARL-posterior” is a modi-
fication of PEARL that samples the latent task variable with
only the posterior distribution in meta-testing (except for
the first episode of every iteration), for better sample effi-
ciency. The original PEARL algorithm samples the latent
task variable with not only the posterior but also the prior
distribution. The results are shown in Figure 2. The pro-
posed method achieved better results, especially for sweep-
into and basket-ball. In basket-ball, performance of ELUE
improved gradually, while the other methods did not.

In the second experiment, to compare the performance
when the amount of meta-testing data was very small, we
evaluated the methods without parameter updates in meta-
testing. Figure 3 shows that our method outperformed
PEARL in basket-ball, sweep-into, and pick-place. In ad-
dition, our method was better in terms of the cumulative
reward in the first episode in the other tasks.

In the third experiment, as an ablation study, we compared
ELUE and ELUE without cross-entropy loss (“ELUE_0”),
which we introduced in Section 3.3. Figure 4 shows the
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(a) basket-ball (b) dial-turn (c) pick-place

(d) reach (e) sweep-into (f) window-open

Figure 4: Comparison with or without cross-entropy loss of ELUE. Vertical axis is moving average ± standard deviation of average
episode rewards in meta-testing, and horizontal axis is number of time steps.

results. Without the cross entropy loss, the performance
degraded slightly on some tasks.

6. Conclusion
We proposed a novel off-policy meta-learning method,
ELUE. It learns the natural embeddings of task features,
beliefs over the embedding space, belief conditional poli-
cies and Q-functions. We apply a general permutation-
invariant form to the belief representations in our method.
Because of this, ELUE can train independently from actual
trajectories, which can lead to diversity in data set and sta-
ble training. The belief-conditional policy and Q-function
are learned in a manner similar to soft actor-critic. Be-
cause of the beliefs, the performance can be improved by
updating the beliefs, especially when the meta-test task is
similar to the meta-training tasks. ELUE also updates the
parameters of neural networks in meta-testing, which can
alleviate the gap between tasks in meta-testing and those
in meta-training. In experiments, we examined the sample
efficiency of ELUE and PEARL with Meta-World bench-
marks, and we showed that ELUE outperformed PEARL.

References
Christopher Berner, Greg Brockman, Brooke Chan, Vicki
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