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Abstract
Reinforcement Learning, a machine learning
framework for training an autonomous agent
based on rewards, has shown outstanding results
in various domains. However, it is known that
learning a good policy is difficult in a domain
where rewards are rare. We propose a method,
optimistic proximal policy optimization (OPPO)
to alleviate this difficulty. OPPO considers the
uncertainty of the estimated total return and op-
timistically evaluates the policy based on that
amount. We show that OPPO outperforms the
existing methods in a tabular task.

1. Introduction
Reinforcement learning is a framework to learn a good pol-
icy in terms of total expected extrinsic rewards by interact-
ing with an environment. It has shown super-human perfor-
mance in the game of Go and in Atari games (Mnih et al.,
2015; Silver et al., 2017). In the early days, RL algo-
rithms such as Q-learning, and state-action-reward-state-
action (SARSA) (Sutton et al., 1998), and recently, more
sophisticated algorithms have been proposed. Among the
latter, proximal policy optimization (PPO) is one of the
most popular algorithms, because it can be used in a va-
riety of tasks such as Atari games and robotic control
tasks (Schulman et al., 2017).

However, learning a good policy is difficult when the agent
rarely receives extrinsic rewards. Existing methods allevi-
ate this problem by adding another type of reward called
intrinsic reward. For example, as an intrinsic reward,
Pathak et al. (2017) and Burda et al. (2019a) use prediction
error of the next state, and Burda et al. (2019b) use evalua-
tion of state novelty. However, these methods are not based
on solid theoretical backgrounds.
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Uncertainty Bellman exploration (UBE) is another method
to alleviate the sparse reward problem, which has a more
solid theoretical background (O’Donoghue et al., 2017).
UBE evaluates the value of a policy higher when the es-
timation of the value is more uncertain, like in “opti-
mism in face of uncertainty” in multi-armed bandit prob-
lems (Bubeck et al., 2012). O’Donoghue et al. (2017)
showed a relationship between the local uncertainty and the
uncertainty of the expected return and applied the uncer-
tainty estimation to SARSA.

We apply the idea of UBE to PPO and propose a new algo-
rithm named optimistic PPO (OPPO) which evaluates the
uncertainty of the total return of a policy and updates the
policy in the same way as PPO. By updating the policy
like PPO, its policy is expected to be stable, and this al-
lows OPPO to evaluate the uncertainty of estimated values
in states that are far from the current state.

2. Background
2.1. Uncertainty Bellman Equation and Exploration

Markov decision processes (MDPs) are models of sequen-
tial decision-making problems. In this paper, we focus on
an MDP with a finite horizon, state, and action space. An
MDP is defined as a tuple, ⟨S,A, r, T, ρ,H⟩, where S is
a set of possible states, A is a set of possible actions; and
r is a reward function S × A → R, which defines the ex-
pected reward when the action is taken at the state; T is
a transition function S × A × S → [0, 1], which defines
the transition probability to the next state when the action
is taken at the current state; ρ is a probability distribution
of the initial state, and H ∈ N is the horizon length of the
MDP, i.e. the number of actions until the end of an episode.

The objective of an agent/learner is to learn a good policy
in terms of expected total return. Formally, policy πθ(a|s)
(s ∈ S, a ∈ A) is the probability of taking action a at
state s, where θ is a set of parameters that determines the
probability (for the sake of simplicity, we often omit θ).
The Q-value Qh,π

(s,a), (Q
H+1,π
(s,a) := 0) is an expected total

return when the agent is at state s, time-step h, takes action
a, and follows policy π after taking action a.

Let us assume the Bayesian setting of Q-value estimation,
where there are priors and posteriors over the mean reward
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function r and the transition function T . Let r̂ be the sam-
pled reward function, T̂ be the sampled transition function
from prior or posterior, and Fτ be the sigma-algebra of all
data (e.g. states, actions, rewards) earned by τ times sam-
pling. It is known that there exists a unique Q̂h,π

(s,a) that
satisfies the Bellman equation,

Q̂h,π
(s,a) = r̂(s, a) +

∑
s′,a′

π(a|s)T̂ (s, a, s′)Q̂h+1,π
(s′,a′), (1)

for all s and a, for h = 0, . . . , H , where Q̂H+1,π
(s,a) = 0.

O’Donoghue et al. (2017) extend this Bellman equation to
the variance/uncertainty of Q̂h,π

(s,a).

To prove theoretical results, let us assume that the state
transition of the MDP is a directed acyclic graph (DAG)
and that expected reward r(s, a) is bounded for all states
and actions. We denote the conditional variance of a ran-
dom variable x as

varτx := E((x− E(x|Fτ )|Fτ )
2. (2)

We denote the maximum of Q-value as Qmax and ντ (s, a)
as

varτ r̂(s, a) +Qmax
2
∑
s′

varτ T̂ (s, a, s
′)

Tτ (s, a, s′)
, (3)

where Tτ (s, a, s
′) := ET̂ [T̂ (s, a, s

′)|Fτ ]. The Q-value sat-
isfies the following equation (O’Donoghue et al., 2017).
Theorem 1. For any policy π, there exists a unique Qh,π

2,τ

that satisfies the uncertainty Bellman equation,

Qh,π
2,τ (s, a) = ντ (s, a) +

∑
s′,a′

π(a′|s′)Tτ (s, a, s
′)Qh+1,π

2,τ (s′, a′)

(4)

for all (s, a) and h = 1, . . . , H , where QH+1,π
2,τ = 0, and

Qh,π
2,τ ≥ varτ Q̂

h,π point-wise.

This theorem shows a relationship between the local uncer-
tainty, ντ (s, a) and the uncertainty of estimated Q-values.

For convenience of discussion in later sections, we intro-
duce some notations. Let us denote the solution of the Bell-
man equation,

Qh,π
1,τ (s, a) = rτ (s, a) +

∑
s′,a′

π(a′|s′)Tτ (s, a, s
′)Qh+1,π

1,τ (s′, a′)

(5)
as Qh,π

1,τ , where the estimated mean reward, rτ (s, a) is
Er̂[r̂(s, a)|Fτ ]. For i = 1, 2,

V h,π
i,τ (s) :=

∑
a

π(a|s)Qh,π
i,τ (s, a), (6)

Ah,π
i,τ (s, a) := Qh,π

i,τ (s, a)− V h,π
i,τ (s), (7)

ηi,τ (π) :=
∑
s

ρ(s)V 0,π
i,τ (s). (8)

To estimate ντ (s, a), O’Donoghue et al. (2017) start from
the case where the domain is tabular. Let ns,a denote the
number of times action a is chosen at state s and let σ2

r

denote the variance of a reward sampled from the reward
distribution. We assume that the reward distribution and its
prior is Gaussian, and the prior over the transition function
is Dirichlet; then

varτ r̂(s, a) ≤ σ2
r/nsa, (9)∑

s′

varτ T̂ (s, a, s
′)/Tτ (s, a, s

′) ≤ |Ss,a|/nsa, (10)

where |Ss,a| is the number of next states reachable from
(s, a). Thus, there exists a constant Cu which satisfies
ντ (s, a) ≤ Cu

ns,a
, e.g. Cu = σ2

r + Q2
max|Ss,a|. Since this

exact upper bound is too loose in most cases, UBE heuristi-
cally chooses Cu instead of using the parameter assured to
satisfy the bound. In a domain other than the tabular, UBE
extends the discussion above and uses pseudo-counts to es-
timate the local uncertainty. O’Donoghue et al. (2017) ap-
plied UBE to SARSA (Sutton et al., 1998), which is a more
primitive algorithm than Proximal Policy Optimization.

2.2. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a simplified
version of trust region policy optimization (TRPO)1.
Although TRPO shows promising results in control
tasks (Schulman et al., 2015a), PPO empirically shows bet-
ter results in most cases (Schulman et al., 2017). PPO uses
a clipped variable as follows, so as not to change policy
drastically.

L(θ) = Ēh

[
min

(
lh(θ)Ā

h, clip (lh(θ), 1− ϵ, 1 + ϵ) Āh
)]

,
(11)

where θ is the parameters of the policy, h is time-step, lh(θ)
is πθ(ah|sh)

πθ old (ah|sh) , Āh is the estimated advantage value, e.g. the

estimated value of Ah,π
1,τ (sh, ah) in this paper, and Ēh[·] is

the empirical average over a batch of samples. The clipping
function clip (x, 1− ϵ, 1 + ϵ) means x = 1+ϵ if x > 1+ϵ
and x = 1 − ϵ if x < 1 − ϵ. PPO samples the data by
executing actions for T time-steps following the policy and
repeating it N times. PPO updates the policy by maximiz-
ing [L− prediction error of V-value+ entropy of policy] in
the data.

2.3. Exploration Based on Intrinsic Reward

Random network distillation (RND) is recently proposed
for alleviating the problem of sparse reward (Burda et al.,

1While the original TRPO and PPO are formulated under the
assumption that the policy is run for an MDP with an infinite hori-
zon, they have recently been extended in the case of finite hori-
zon (Azizzadenesheli et al., 2018), which is the same setting as
ours.
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2019b). It has shown outstanding performance in Atari
games. RND uses two neural networks called a tar-
get network ft and a predictor network fp. Each net-
work maps state/observation x to its value ft(x) or fp(x).
The networks are randomly initialized, and the target net-
work’s parameters are fixed, on the other hand, the pre-
dictor learns the outputs of the target. The intrinsic re-
ward for observation x is defined as the difference of output
||ft(x)−fp(x)||2. As a reward, RND uses [extrinsic one+
intrinsic one], instead of using only the extrinsic one. RND
uses the reward defined above and learns a policy like PPO.
RND updates the policy to maximize [PPO’s objective −
differences of outputs of the networks] in the batch data. It
is expected that more observations lead to smaller differ-
ences of the outputs, which means the intrinsic reward is
smaller. In RND, the intrinsic rewards can be seen as a
kind of pseudo-count bonus. However, there is no theoret-
ical discussion about how this bonus should be used.

There are other methods for exploration by the intrinsic re-
wards. To calculate the intrinsic rewards, Bellemare et al.
(2016) used context tree switching, and Ostrovski et al.
(2017) used pixcelCNN. However, those methods depend
on visual heuristics and are not straightforward to apply
to other tasks than Atari games, e.g. control tasks whose
inputs are sensor data. Ecoffet et al. (2019) proposed an
another method for exploration, which is based on mem-
orization and random search rather than intrinsic reward.
Although it shows state-of-the-art performance on Mon-
tezuma’s Revenge, it is also not straightforward to extend
the method to other tasks. Tang et al. (2017) proposed a
method similar to RND which evaluates the state novelty
by using a hash function.

3. Optimistic Proximal Policy Optimization
We propose optimistic proximal policy optimization
(OPPO), which is a variant of PPO. OPPO optimizes a pol-
icy based on optimistic evaluation of the expected return
where the evaluation is optimistic by the amount of the un-
certainty of the expected return.

First, we explain its theoretical background. We denote the
optimistic value of policy η̃(π)τ as below:

η̃τ (π) := η1,τ (π) + 2β
√
η2,τ (π), (12)

where β > 0 is a hyper-parameter for exploration. Setting
the high value to β means emphasizing exploration more
than exploitation. Let us denote the value of policy η̂(π)
as
∑

s,a ρ(s)π(a|s)Q̂
0,π
(s,a). Then the following corollary is

derived from Theorem 1.

Corollary 1.

varτ (η̂(π)) ≤ η2,τ (π) (13)

This corollary shows that η2,τ (π) is an upper bound of
the uncertainty of the expected return of π. In general,
more data lead to more accurate estimation, and this means
lower ντ (s, a) and ητ,2(π). Especially if ντ (s, a) = 0,
ητ,2(π) = 0. Also, 0 ≤ varτ (η̂(π)) ≤ η2,τ (π). There-
fore, the difference of varτ (η̂(π)) and η2,τ (π) decreases
to zero as the number of data increases. These facts show
that evaluating varτ (η̂(π)) by η2,τ (π) is reasonable. Be-
sides, η1,τ (π) is an estimation of the mean of η̂(π). Thus,
η̃(π)τ is a form that the estimated return plus its uncertainty
and seeking a policy which maximizes η̃(π)τ is reasonable
in terms of “optimism in face of uncertainty”.

However, it is difficult to find policy π′ which maximizes
η̃τ (π

′) by directly evaluating η̃τ (π
′). Thus, following PPO,

OPPO approximates η̃τ (π′) based on the current policy π.
Let Lτ (π, π

′) denote

η̃τ (π) +
∑
h,s,a

ρπh(s)π
′(a|s)

(
Ah,π

1,τ (s, a) + β
Ah,π

2,τ (s, a)√
η2,τ (π)

)
.

(14)

Then the following equations are satisfied.

Theorem 2. For any parameters of policy ϕ,

Lτ (πϕ, πϕ) = η̃τ (πϕ) (15)
∇θLτ (πϕ, πθ)|θ=ϕ = ∇θη̃τ (πθ)|θ=ϕ (16)

Theorem 2 means that η̃τ (π
′) can be approximated by

Lτ (π, π
′) with enough accuracy if π and π′ are not very

different. Therefore, OPPO chooses the next policy π′ so
as to increase the estimated value of Lτ (π, π

′) with regu-
larizing the ‘similarity’ between π and π′ by the clipping
function introduced in section 2.2.

The objective function of OPPO is the same as L in Equa-
tion (11), except that OPPO uses Ãh instead of Āh in the
equation, where Ãh is

A1(sh, ah) + βA2(sh, ah)/
√
η2 + c. (17)

Parameter c ≥ 0 is introduced for stabilizing the estimation
when η2(π) is nearly zero. Note that Theorem 2 is valid if
the square root in equations (12), (14) are either

√
η2,τ (π)

or
√
η2,τ (π) + c. The terms, η2, A1(s, a) and A2(s, a), are

the estimated values of η2,τ (π), A
h,π
1,τ (s, a) and Ah,π

2,τ (s, a),
respectively, which are calculated based on generalized ad-
vantage function estimation (Schulman et al., 2015b). We
show the details in A.2. The other parts of the objective
function of OPPO are prediction error of V-values and en-
tropy of policy, which are the same as PPO.

Note that simply adding the bonuses ns,a
−1/2 to the ex-

trinsic rewards instead of adding bonuses like UBE and
OPPO may be overly optimistic, as shown in an example in
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O’Donoghue et al. (2017), although ordinary count-based
exploration is based on the bonuses (Bellemare et al., 2016;
Ostrovski et al., 2017; Tang et al., 2017).

OPPO can be combined with an arbitrary estimator of the
local uncertainty. For example, the local uncertainty can
be directly evaluated by bootstrap sampling of the reward
and transition functions, like the estimators of Q-values in
Osband et al. (2016). In this paper, instead of the model-
based approach, we take a model-free one for simplicity.
We use the RND bonus of state s′ as the local uncertainty of
(s, a) pair, where s′ is the next state after (s, a). Although
the networks in RND can be easily extended to evalute nov-
elty of (s, a) pair instead of s′, we follow the RND original
imprementations for a simple and clear comparison. We
discuss the difference between the local uncertainty eval-
uations in A.3. In this case, OPPO is equivalent to RND,
if β2 = c and c → ∞. Testing OPPO with various lo-
cal uncertainty estimators is left for future work. We also
tested OPPO with local uncertainties based on exact visita-
tion counts of s′ i.e., 1

ns′
.

4. Experiments
4.1. Tabular Domain

First, we examine the efficiency of the proposed algorithms
in a tabular domain where visitation counts are easily cal-
culated. We used a domain called a bandit tile. A bandit tile
is a kind of a grid world with two tiles exist on which the
agent receives a stochastic reward. We show an example
of a bandit tile in figure 1. In the figure, ‘G’ represents the
tile and ‘S’ represents possible initial positions of the agent.
The initial position is stochastically chosen among the two
‘S’ tiles. The reward is sampled from a Gaussian distribu-
tion. The mean reward of each ‘G’ tile is 0.5 and 0.3 and its
variance is 0.5. The episode ends when the agent reaches
the ‘G’ tile or 100 time-steps are passed.

We compared OPPO with the bonus based on exact visita-
tion counts to OPPO, RND, and PPO. Figure 2 shows that
OPPO is more efficient than RND and also suggests that we
can improve OPPO if there is a proper method to estimate
local uncertainty.

4.2. Atari Domain

Next, we show experimental results on more complex
tasks, Atari games, popular testbeds for reinforcement
learning. It has been pointed out that Atari games are deter-
ministic, which is not appropriate for being testbeds, so we
added randomness by sticky action (Machado et al., 2018).
In the sticky action environment, the current chosen ac-
tion are executed with the probability 1− ζ while the most
previous action is repeated with the probability ζ. We set
ζ = 1/4. We chose six games (Frostbite, Freeway, So-

Figure 1: Example of bandit tile domain

Figure 2: Moving average ± standard deviation of epsode rewards
in bandit tile domain with 10 seeds until 1M time-steps

laris, Venture, Montezuma’s Revenge, and Private Eye) to
evaluate the proposed method and run algorithms until 100
million time-steps in Frostbite and 50 million in the other
games. OPPO was more effective than RND at Frostbite in
terms of learning speed, although the difference is not so
salient as that in the tabular case. The details are shown in
figure 4 in Appendix.

5. Conclusion
We have proposed a new algorithm, optimisitic proximal
policy optimization (OPPO) to alleviate the sparse reward
problem. OPPO is an extension of proximal policy op-
timization and considers uncertainty of estimation of ex-
pected total returns instead of simply estimating the re-
turns. OPPO optimistically evaluates the values of policies
by the amount of uncertainty and improves the policy like
PPO. Experimental results show that OPPO learns more ef-
fectively than the existing method, RND, in a tabular do-
main.
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A. Details of Proposed Method
A.1. Proofs

Corollary 1 is derived from the following relations.

Proof.

varτ (η̂(π)) = varτ

(∑
s,a

ρ(s)π(a|s)Q̂0,π
(s,a)

)
(18)

≤
∑
s,a

ρ(s)π(a|s)varτ
(
Q̂0,π

(s,a)

)
(19)

≤
∑
s,a

ρ(s)π(a|s)Q0,π
2,τ (s, a)) (20)

= η2,τ (π) (21)

The first inequality is derived from Jensen’s inequality, and the second one is derived from Theorem 1.

For convenience, we introduce some additional notations. Let ρπh(s) denote the probability of the agent being at state s
at time-step h under the condition s0 ∼ ρ (·) , ah ∼ π (·|sh) , sh+1 ∼ Tτ (sh, ah, ·) for h ≥ 0 and expectation under the
condition as Es0,a0,···∼π̃[·]. Theorem 2 is derived from the following relations.

Proof. Firstly, we show that ηi,τ (π) satisfies the following equations,

ηi,τ (π
′)− ηi,τ (π) =

∑
h,s,a

ρπ
′

h (s)π′ (a|s)Ah,π
i,τ (s, a) , (22)

which is almost the same as the equations shown in (Kakade and Langford, 2002; Schulman et al., 2015a). Equation (22)
is derived as below:

ηi,τ (π
′)− ηi,τ (π) = Es0,a0,...,∼π′

[
H∑

h=0

r (sh, ah)− V 0,π
i,τ (s0)

]
(23)

= Es0,a0,...,∼π′

[
H∑

h=0

{
r(sh, ah) + V h+1,π

i,τ (sh+1)− V h,π
i,τ (sh)

}]
(24)

= Es0,a0,...,∼π′

[
H∑

h=0

Ah,π
i,τ (sh, ah)

]
(25)

=
∑
h,s,a

ρπ
′

h (s)π′(a|s)Ah,π
i,τ (s, a) . (26)

The first equation is derived from the definition of η and the fact that sampling of the initial state only depends on ρ(·),
the second one V H+1 = 0. The third one and the forth one are derived from the definition of Ah,π

i,τ and Es0,a0,...,∼π′ [·],
respectively.

For simplicity, we denote πϕ as π. By the fact that
∑

a π(a|s)A
h,π
i,τ (s, a) = 0 (i = 1, 2),

Lτ (π, π)− η̃τ (π) =
∑
h,s,a

ρπh(s)π(a|s)

(
Ah,π

1,τ (s, a) + β
Ah,π

2,τ (s, a)√
η2,τ (π)

)
(27)

= 0. (28)
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Also,

∇θLτ (πϕ, πθ)|θ=ϕ −∇θη̃τ (πθ)|θ=ϕ = ∇θ

∑
h,s,a

ρπh(s)πθ(a|s)

(
Ah,π

1,τ (s, a) + β
Ah,π

2,τ (s, a)√
η2,τ (π)

)∣∣∣∣∣∣
θ=ϕ

− ∇θ

∑
h,s,a

ρπθ

h (s)πθ(a|s)

(
Ah,π

1,τ (s, a) + β
Ah,π

2,τ (s, a)√
η2,τ (π)

)∣∣∣∣∣∣
θ=ϕ

(29)

= −
∑
h,s

∇θρ
πθ

h (s)|θ=ϕ

∑
a

π(a|s)

(
Ah,π

1,τ (s, a) + β
Ah,π

2,τ (s, a)√
η2,τ (π)

)
(30)

= 0. (31)

The first equation is derived from equation (22).

A.2. Algorithm

In the batch data, we denote the state, action, and reward at time-step h (0 ≤ h ≤ T ) and sampled by actor n (0 ≤ n ≤
N − 1) are s

(n)
h , a

(n)
h , and r

(n)
h , respectively. Let r(n)1,h denote r

(n)
h and r

(n)
2,h denote the local uncertainty of (s(n)h , a

(n)
h ).

Ai (i = 1, 2) in equation (17) is calculated as below:

Ai(s
(n)
l , a

(n)
l ) =

T−1∑
h=l

(γiλ)h−l
{
γiVi(s

(n)
h+1) + r

(n)
i,h − Vi(s

(n)
h )
}
, (32)

where Vi is an estimator of V π
i,τ and γ is a discount factor. The discount factor is often used even if the horizon is finite, so

we follow the ordinary implementations. η2 is calculated as below:

η2 =

N−1∑
n=0

V2(s
(n)
0 ) +A2(s

(n)
0 , a

(n)
0 ) (33)

Pseudo code is shown at Algorithm 1.

A.3. Local Uncertainty Estimation

Let ν(s′) denote the local uncertainty based on the next state s′ after (s, a) pair. OPPO uses ν(s′) as the local uncertainty
of (s, a) instead of ν(s, a). There is a small gap between the discussion and the implementation of OPPO. However, using
ν(s′) is reasonable if the state transition is a tree, a graph without cycles. Using ν(s′) means using the average of ν(s′) as
the local uncertainty of (s, a). This can be approximated by

∑
s′ T (s, a, s

′)ν(s′). In the tree case, ns′ can be approximated
by T (s, a, s′)ns,a. Thus, if ν(s′) ≈ 1

ns′
, the local uncertainty of (s, a) can be approximated by

∑
s′ T (s, a, s

′)ν(s′) ≈∑
s′ T (s, a, s

′) 1
ns′

≈
∑

s′
1

ns,a
=

|Ss,a|
ns,a

. This means that ν(s, a) can be approximated by the average of ν(s′), if Cu =

|Ss,a|.

B. Further Investigation in Tabular Domain
To confirm the validity of using RND bonus as visitation counts, we measured a ratio RND bonus

1/ns′
to check if it is stable at

around one in the bandit tile domain. Figure 3 shows that the ratio was around 1 for millions of time-steps, although it was
high at the beginning and nearly zero at the end. It can be considered that OPPO is worse than OPPO with the exact count
bonus by the amount of the overvaluation, and that the undervaluation was not harmful because it occured after learning
the policy to the best tile.

C. Details of Results in Atari Games
We compared OPPO with RND in the six Atari games. In the original RND implementation, a reward clipping technique
which transforms negative/positive extrinsic reward to {−1, 1} is used, so we also used this technique in OPPO and RND.
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Algorithm 1 OPPO

1: initialize the parameters of the policy network, the V-value estimators and the local uncertainty estimator.
2: for τ = 0, . . . do
3: for n = 0, . . . N − 1 do
4: for t = 0, . . . T − 1 do
5: make a batch data τ by sampling action a

(n)
t from π(·|s(n)t ), exectuting a

(n)
t , and receiving next state s

(n)
t+1,

extrinsic reward r
(n)
t , and the local uncertainty of (s(n)t , a

(n)
t ).

6: end for
7: end for
8: update policy so as to maximize the objective function of OPPO based on the data.
9: end for

Figure 3: Moving average of the average of RND bonus
1/ns′

in batch data.

Note that we use a frame skipping technique, and the number of the frame skips is four; so one time-step is equal to or less
than four frames (it is less than four if the episode ends at a skipped frame).

Figure 4 shows that OPPO learns more effectively than RND in Frostbite although there is only slight difference with
the other games. Also, Figure 4 shows that exrinsic rewards decrease in Frostbite. One of the reason for the decrease
may be the reward clipping, although further investigation is needed to confirm that. By the reward clipping, the agent
learns a policy to receive positive rewards with high frequency, not high returns. The agent may learn the policy with the
same frequency of rewards but with a small total return, as it receives data. Note that there are small and large rewards in
Frostbite, and that a novel states leads to a higher reward in most Atari games (Burda et al., 2019a). This problem can be
alleviated by rescaling the reward by considering the amount of reward, e.g. PopArt (van Hasselt et al., 2016), which is
left for future work.
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(a) Frostbite (b) Freeway

(c) Solaris (d) Venture

(e) Montezuma’s Revenge (f) Private Eye

Figure 4: Moving average ± standard deviation of episode rewards with 5 seeds until 50M time-steps (100M time-steps in Frostbite)


