
Refining Manually-Designed Symbol Grounding and High-Level Planning
by Policy Gradients

Takuya Hiraoka12, Takashi Onishi12, Yoshimasa Tsuruoka23,
1 NEC Central Research Laboratories

2 National Institute of Advanced Industrial Science and Technology
3 The University of Tokyo

t-hiraoka@ce.jp.nec.com, t-onishi@bq.jp.nec.com, tsuruoka@logos.t.u-tokyo.ac.jp

Abstract
Hierarchical planners that produce interpretable
and appropriate plans are desired, especially in its
application to supporting human decision making.
In the typical development of the hierarchical plan-
ners, higher-level planners and symbol grounding
functions are manually created, and this manual
creation requires much human effort. In this pa-
per, we propose a framework that can automati-
cally refine symbol grounding functions and a high-
level planner to reduce human effort for designing
these modules. In our framework, symbol ground-
ing and high-level planning, which are based on
manually-designed knowledge bases, are modeled
with semi-Markov decision processes. A policy
gradient method is then applied to refine the mod-
ules, in which two terms for updating the modules
are considered. The first term, called a reinforce-
ment term, contributes to updating the modules to
improve the overall performance of a hierarchical
planner to produce appropriate plans. The second
term, called a penalty term, contributes to keep-
ing refined modules consistent with the manually-
designed original modules. Namely, it keeps the
planner, which uses the refined modules, produc-
ing interpretable plans. We perform preliminary ex-
periments to solve the Mountain car problem, and
its results show that a manually-designed high-level
planner and symbol grounding function were suc-
cessfully refined by our framework.

1 Introduction
Hierarchical planners have been widely researched in artifi-
cial intelligence communities. One of the main reasons for
that is that the hierarchical planers can divide complex plan-
ning problems, which flat planners cannot solve, into a se-
ries of more simple sub-problems, by using high-level knowl-
edges about the planning problem (e.g., [Nilsson, 1984;
Choi and Amir, 2009; Kaelbling and Lozano-Pérez, 2011]).

A hierarchical planner is composed of multiple planner
layers that are typically divided into two types: high-level and
low-level. A low-level planner performs micro-level plan-
ning, and it deals with raw information about an environment.

In contrast, a high-level planner performs macro-level plan-
ning, and it deals with more abstract symbolic information.
The raw and abstract symbolic information are mapped to
each other by symbol grounding functions. Imagine that a
hierarchical planner is used for controlling a humanoid robot
to put a lemon on a board. Here, the high-level planner makes
a plan such a “Pick a lemon up, and then put it on a board.”
The low-level planner makes a plan for controlling the robot’s
motors according to sensor inputs, to achieve sub-goals given
by the high-level planner (e.g., “Pick a lemon up”). As the
low-level planner cannot understand what “Pick a lemon up”
means, the symbol ground function converts it into actual val-
ues, in the environment, which the low-level planner can un-
derstand.

Hierarchical planners are often used for supporting human
decision making (e.g., in supply chain [Özdamar et al., 1998]
or clinical operations [Fdez-Olivares et al., 2011]). In such
cases, people make decisions on the basis of a plan, and thus
it is necessary that 1) they understand the plan (especially
one of a high-level planner) and 2) they can reach satisfying
outcomes by following the plan (i.e., the hierarchical planner
gives appropriate plans).

In many previous studies on hierarchical planners, symbol
grounding functions and high-level planners were designed
manually [Nilsson, 1984; Malcolm and Smithers, 1990; Cam-
bon et al., 2009; Choi and Amir, 2009; Dornhege et al., 2009;
Wolfe et al., 2010; Kaelbling and Lozano-Pérez, 2011]. Al-
though this makes it possible for people to understand the
plans easily, much human effort is needed to carefully design
a hierarchical planner that provides appropriate plans.

Konidaris et al. [2014; 2015; 2016] have proposed frame-
works for automatically constructing symbol grounding func-
tions and high-level planners, but they require a human to
carefully analyze them to understand the plans. These con-
structed modules are often complicated and, in such cases,
analysis becomes a burden.

In this paper, we propose a framework that automatically
refines manually-designed symbol grounding functions and
high-level planners, with a policy gradient method. Our
framework differs from frameworks proposed in the afore-
mentioned previous studies on the basis of the following
points:

• Unlike the hierarchical planners based solely on
manually-designed symbol grounding functions and

L & R 2018

- 39 -

high-level planners [Nilsson, 1984; Malcolm and
Smithers, 1990; Cambon et al., 2009; Choi and Amir,
2009; Dornhege et al., 2009; Wolfe et al., 2010; Kael-
bling and Lozano-Pérez, 2011], our framework refines
these modules without human intervention. This auto-
mated refinement reduces the design workload for the
modules.

• Unlike the frameworks that automatically construct
symbol grounding functions and high-level plan-
ners [Konidaris et al., 2014; 2015; Konidaris, 2016], our
framework refines these while attempting to keep the re-
sulting symbol grounding consistent with prior knowl-
edge of the definition of the symbols as much as possi-
ble (see Section 4). Therefore, a person can understand
the plan that high-level planners output without careful
analysis of the refined modules.

In this paper, we first explain our hierarchical planner (in-
cluding the high-level planner and symbol grounding func-
tions), and how these are designed (Section 3). Then, we
introduce the framework designed to refine them (Section 4).
Finally, we experimentally demonstrate the effectiveness of
our framework (Section 5).

2 Preliminaries
Our framework, introduced in Section 4, is based on semi-
Markov decision processes (SMDPs) and policy gradient
methods.

2.1 Semi-Markov Decision Processes
SMDPs are a framework for modeling a decision problem in
an environment where a sojourn time in each state is a random
variable, and it is defined as a tuple ⟨S,O,R,P,γ⟩. S ⊆ Rn is
the n-dimensional continuous state space; O(s) is a function
that returns a finite set of options [Sutton et al., 1999] avail-
able in the environment’s state s ∈ S; R(s′, t|s,o) is the reward
received when option o ∈ O(s) is executed at s; arriving in
state s′ ∈ S after t time steps; P(s′, t|s,o) is a probability of
s′ ∈ S, and t after executing o in s; and γ ∈ [0,1] is a discount
factor.

Given SMDPs, our interest is to find an optimal policy over
options π∗(o|s):

π∗ = arg max
π

Vπ(s0), (1)

Vπ(s0) = Eπ [R(s1, t0|s0,o0)+ γ tR(s2, t1|s1,o1)+ ...] ,(2)

where (s0,o0, t0,s1) and (s1,o1, t1,s2) are transitions of a
state, an option, time steps elapsed while executing the op-
tion, and the arriving state after executing the option.

2.2 Policy Gradient
To find π∗, we use a policy gradient method [Sutton et al.,
2000]. In a policy gradient method, a policy πθ (o|s) param-
eterized by θ is introduced to approximate π∗, and the ap-
proximation is performed by updating θ with a gradient. Al-
though there are many policy gradient implementations (e.g.,
[Kakade, 2002; Silver et al., 2014; Schulman et al., 2015]),

we use REINFORCE [Williams, 1992]. In REINFORCE, θ
is updated as follows:

θ ← θ +α∇θ logπθ (s̃0, õ0)Vπθ (s̃0), (3)

Vπθ (s̃0) = R(s̃1, t̃0|s̃0, õ0)+ γ t̃0R(s̃2, t̃1|s̃1, õ1)+ ..., (4)

where α is a learning rate and (s̃0, õ0, t̃0, s̃1) and (s̃1, õ1, t̃1, s̃2)
are transitions of state, the executing option, elapsed time
steps, and arriving state, which are sampled on the basis of πθ
in a time horizon. Other variables and functions are the same
as those introduced in Section 2.1. We decided to use REIN-
FORCE for our work because it has successfully worked in
recent work [Silver et al., 2016; Das et al., 2017].

3 Hierarchical Planner with Symbol
Grounding Functions

In this section, we first describe the outline of a hierarchi-
cal planner (including the high-level planner) with symbol
grounding functions, which are manually designed. We then
provide concrete examples of them. The high-level planner
and symbol grounding functions described here are refined
by the framework, which is proposed in Section 4.

The hierarchical planner (Figure 1) is composed of two
symbol grounding functions (one for abstraction and the other
for concretization), a high-level planner, a low-level planner,
and two knowledge bases (one each for the high-level and
low-level planners). These modules work as follows:
Step 1 : The symbol grounding function for abstraction re-

ceives raw information, abstracts it to a symbolic infor-
mation on the basis of its knowledge base, and then out-
puts the symbolic information.

Step 2 : The high-level planner receives the abstract sym-
bolic information, makes a plan using its knowledge
base, and then outputs abstract symbolic information as
a sub-goal, which indicates the next abstract state to be
achieved.

Step 3 : The symbol grounding function for concretization
receives the abstract symbolic information, concretizes
it to raw information about a sub-goal, which specifies
an actual state to be achieved, then outputs the raw in-
formation on the sub-goal. This module performs the
concretization on the basis of its the knowledge base.

Step 4 : The low-level planner receives the raw information
about a sub-goal and then interacts with the environ-
ment to achieve the given sub-goal. In the interaction,
the low-level planner outputs primitive actions in accor-
dance with the raw information given by the environ-
ment. The interaction continues until the low-level plan-
ner achieves the given sub-goal, or until the total number
of elapsed time steps reaches a given threshold.

Step 5 : If the raw information from the environment is not
a goal or terminal state, return to the Step 1.

The knowledge bases for symbol grounding functions and
the high-level planners are designed manually.
Knowledge base for high-level planners is described

as a simple planning domain definition language
(PDDL) [McDermott et al., 1998]. In a PDDL, objects,
predicates, goals, and operators are manually specified.

L & R 2018

- 40 -

Figure 1: Outline of hierarchical planner with grounding functions.

Figure 2: Mountain car with abstract symbols.

The objects and predicates are for building logical for-
mulae, which specify the possible states in the planning
domain. The operators are represented as a pair of
preconditions and effects. The preconditions represent
the states required for applying the operator, and the
effects represent the arriving states after applying the
operators. We use PDDLs in this work because they
are widely used for describing a knowledge base for
symbolic planners.

Knowledge base for symbol grounding functions is de-
scribed as a list of maps between abstract symbolic
information and corresponding raw information. In this
paper, to simplify the problem, we assume that each
item of abstract symbolic information is mapped into
one interval of raw information. Despite its simplicity,
it is useful for representing, for example, typical spatial
information.

Here, we describe the knowledge bases and how the hi-
erarchical planner works to solve the mountain car prob-
lem [Moore, 1991] (Figure 2). In this problem, a car is placed
within a deep valley, and its goal is to drive out by going up
the right side hill. However, as the car’s engine is not strong
enough, it needs to first drive back and forth between the two
hills to generate momentum. In this problem, the hierarchical
planner receives raw information (the position and velocity of
the car) from the environment and is required to make a plan
to move it to the goal (the top of the right side hill).

An example of knowledge for the high-level planner
is shown in Table 1. In this example, objects are
composed of only a “Car.” Predicates are composed of
four instances (“Bottom of hills(x), On right side hill(x),
On left side hill(x), and At top of right side hill(x)”). For
example, “On right side hill(Car)” means that the car is on

Table 1: Example knowledge for high-level planners. Upper part
describes examples of objects, predicates, and goals. Lower part
describes examples of operators.

Objects x = {Car}
Predicates Bottom of hills(x), On right side hill(x),

On left side hill(x), At top of right side hill(x)
Goals At top of right side hill(Car)

Operators Preconditions Effects
Opr.1 Bottom of hills(x) On right side hill(x)
Opr.2 On right side hill(x) On left side hill(x)
Opr.3 On left side hill(x) At top of right side hill(x)

Table 2: Example knowledge for symbol grounding functions.
Abstract symbolic informations Interval of raw information
Bottom of hills(Car) position ∈ [−0.6,−0.4]
On right side hill(Car) position ∈ [−0.2,0.4]
On left side hill(Car) position ∈ [−1.2,−0.8]
At top of right side hill(Car) position ∈ [0.6,0.8]

the right side hill. Operators are composed of three types that
refer to a transition of the objects on the hills. For example,
“Opr.1” refers to the transition that object x has moved from
the bottom of the hills to the right side hill.

An example of the knowledge for symbol grounding func-
tions is shown in Table 2. This example shows mappings
between abstract symbolic information (the location of the
car), and corresponding intervals of raw information (the
actual value of the car’s position). For example, “Bot-
tom of hills(Car)” is mapped to the position of the car is in
the interval [-0.6, -0.4].

Given the knowledge described in Tables 1 and 2, an exam-
ple of how the hierarchical planner works is shown as follows:
Example of Step 1: The symbol grounding function for ab-

straction receives raw information (position=-0.5 and
velocity=0). The position is in the interval [-0.6, -0.4],
which corresponds to the “Bottom of hills(Car)” in Ta-
ble 2. Therefore, the symbol grounding function outputs
“Bottom of hills(Car).”

Example of Step 2: The high-level planner receives “Bot-
tom of hills(Car),” and makes a plan to achieve
the goal (“At top of right side hill(Car)”). By
using the knowledge in Table 1, the high-level
planner makes the plan [Bottom of hills(Car) →

L & R 2018

- 41 -

On right side hill(Car) → On left side hill(Car) →
At top of right side hill(Car)], which means “Starting
at the bottom of the hills, visit, in order, the right side
hill, the left side hill, and the top of the right side hill.”
After following the plan, the high-level planner outputs
“On right side hill(Car).”

Example of Step 3: The symbol grounding function re-
ceives “On right side hill(Car),” and concretizes it to
raw information about sub-goal (position= 0.1, veloc-
ity=*). Here, the position in the raw information is
determined as the mean of the corresponding interval
[−0.2,0.4] in Table 2. In addition, the mask (represented
by “*”) is putted to filter out factors in raw information,
which is irrelevant in the sub-goal (i.e., velocity in this
example).

Example of Step 4: The low-level planner receives posi-
tion= 0.1 and the mask. To move the car to the given
sub-goal (position=0.1), the low-level planner makes a
plan to accelerate the car. This planning is performed
by model predictive control [Camacho and Alba, 2013].
The low-level planner terminates itself when the car ar-
rives at the given sub-goal (position=0.1), or when it
takes a primitive action 20 times.

4 Framework for Refining Grounding
Function and High Level Planner

In this section, we propose a framework for refining the
symbol grounding functions and the high-level planner in-
troduced in the previous section. In our framework, sym-
bol grounding and high-level planning, which are based
on manually-designed knowledge bases, are modeled with
SMDPs. Refinement of the symbol grounding functions and
the high-level planner is achieved by applying policy gradi-
ents to the model. First, we introduce an abstract model and
then provide an example of its implementation in the moun-
tain car problem. Finally, we explain how the policy gradient
method is applied to the model.

4.1 Modeling Symbol Grounding and High-Level
Planning with SMDPs

We model symbol grounding and high-level planning, which
are based on manually-designed knowledge bases, with
SMDPs. The symbol grounding functions and the high-level
planner are modeled as components of the parameterized pol-
icy. In addition, the knowledge bases are modeled as priors
for the policy’s parameters.

We first assume that information and modules, which ap-
pear in hierarchical planning, are represented as random vari-
ables and probability functions, respectively (Figure 1). Sup-
pose that Sh is a set of all possible symbols the symbol
grounding functions and the high-level planner deal with, raw
information is represented as an n-dimensional vector, and
A ⊂ Rm is a set of all possible primitive actions. We denote
raw information by s,s′ ∈ Rn 1, abstract symbol information
by sh ∈ Sh, abstract symbolic information about a sub-goal

1The denotation is the same as that of the state described in Sec-
tion 2.1 because the raw information is modeled as the state.

Figure 3: SMDPs for our framework.

by gh ∈ Sh, raw information about a sub-goal g ∈ Rn, and a
primitive action by a ∈ A. In addition, we denote the symbol
grounding function for abstraction by P(sh|s;θsg f), the sym-
bol grounding function for concretization by P(g|gh;θsg f),
the high-level planner by P(gh|sh;θhp), the low-level plan-
ner by P(a|s,g), the environment by P(s′|s,a), the knowledge
base for high-level planners by P(θhp), and the knowledge
base for the high-level planner by P(θsg f). Here, θsg f and
θhp are the parameters for the symbol grounding functions
and the high-level planner, respectively.

High-level planning and symbol grounding based on the
knowledge base are modeled as SMDPs (Figure 3). In this
model, the components of SMDPs (i.e., an option, a state, a
reward, and a transition probability) are implemented as fol-
lows:
Option o: is implemented as a tuple ⟨sh,gh,g⟩ of abstract

symbolic information sh, abstract symbolic information
about a sub-goal gh, and raw information about a sub-
goal g.

State s: is implemented as raw information.
Reward R(s′, t|s,o): is the cumulative reward given by the

environment P(s′|s,a), while the low-level planner
P(a|s,g) is interacting with P(s′|s,a).

Transition probability P(s′, t|s,o): is implemented as a
function, which represents the state transition pro-
ceeded by the interaction between the low-level plan-
ner P(a|s,g) and the environment P(s′|s,a). Note
that although the transition probability receives option
⟨sh,gh,g⟩, only g is used in the transition probability.

In this model, the parameterized policy πθ is implemented
to control abstraction of raw information, high-level plan-
ning, and concretization of abstract symbolic information, in
accordance with the knowledge bases. Formally, πθ is imple-
mented as follows:

πθ (g,gh,sh|s) = P(g,gh,sh,θsg f ,θhp|s)
= P(g|gh;θsg f)P(gh|sh;θhp)P(sh|s;θsg f)

·P(θsg f)P(θhp). (5)

The right term in the second line can be derived by decom-
posing the joint probability in the first line, in accordance with
the probabilistic dependency shown in Figure 2. Note that, in
this equation, θ is represented as θsg f ||θhp, i.e., a concatena-
tion of θsg f and θhp. By using this representation for πθ , we
can derive an update expression, which can refines θsg f and
θhp keeping them consistent with P(θsg f) and P(θhp). See
Section 4.3 for details.

L & R 2018

- 42 -

P(θsg f) and P(θhp) are needed to reflect the manually-
designed knowledge bases. To do so, first, P(θsg f) and P(θhp)

are implemented as parametric distributions P(θsg f ;θ ′sg f) and
P(θhp;θ ′hp), respectively, and their hyper-parameters θ ′sg f and
θ ′hp are determined to replicate manually-designed symbol
grounding functions and high-level planners. More formally,
we use θ ′∗sg f and θ ′∗sg f as the optimal parameters of θ ′sg f and
θ ′hp, respectively, acquired by the following equations:

θ ′∗sg f = arg min
θ ′sg f

Dsg f

(
P(g|gh;θsg f)P(θsg f ;θ ′sg f)

)
, (6)

θ ′∗hp = arg min
θ ′hp

Dhp

(
P(gh|sh;θhp)P(θhp;θ ′hp)

)
, (7)

where Dsg f and Dhp are a divergence (e.g., KL divergence)
from the manually-designed symbol grounding function and
high-level planner, respectively. Dsg f and Dhp are abstract
criteria, and thus, there are many implementations of func-
tionals “arg min

θ ′sg f

Dsg f (·)” and “arg min
θ ′hp

Dhp (·).”

4.2 An Example of Model Implementation to Solve
the Mountain Car Problem

We introduced an abstract model for symbol grounding and
high-level planning with knowledge bases in the previous sec-
tion. In this section, we provide an example of an implemen-
tation of the model to solve the mountain car problem.

First, Sh and A are implemented as follows:

Sh :=
{

Bottom of hills(Car), On right side hill(Car),
On left side hill(Car), At top of right side hill(Car)

}
,(8)

A := [−1.0,1.0]. (9)

Sh is implemented in accordance with the knowledge shown
in Table 2. A is implemented in accordance with the definition
of actions to solve the mountain car problem, and represented
as a set of values for the acceleration of the car.

Second, the probabilities of the modules in the hierarchical
planner are implemented as follows:

P(sh|s;θsg f) :=
N(s|µsh ,σsh)

Σs′h∈Sh
N(s|µs′h

,σs′h
)
, (10)

P(g|gh;θsg f) := N(g|µgh ,σgh), (11)

P(gh|sh;θhp) :=
exp(φ(sh)wwwT

gh
)

Σg′h∈Sh
exp(φ(sh)wwwT

g′h
)
. (12)

P(sh|s;θsg f) is implemented as the normalized likelihood of
a normal distribution (Eq. (10)), and P(g|gh;θsg f) is imple-
mented as a normal distribution (Eq. (11)). In Eq. (10) and
Eq. (11), N(s|µsh ,σsh) represents a normal distribution for s,
which is parameterized by mean µsh and standard deviation
σsh , s.t, ∀sh ∈ Sh. Note that µsh and σsh are identical to µgh
and σgh , respectively. P(sh|s;θsg f) is implemented as a soft-
max function (Eq. (12)). In Eq. (12), φ(sh) is a base function
that returns a one-hot vector ∈ {0,1}|Sh| in which only one

element corresponding to the value of sh is set to a value of 1,
and the other elements are set to a value of 0. wwwgh ∈ R|Sh| is a
weight vector, s.t., ∀gh ∈ Sh. In this implementation, θsg f is a
vector composed of µsh ,σsh , s.t., sh ∈ Sh, and θhp is a vector
composed of the set wwwgh , s.t., gh ∈ Sh. P(a|s,g) and P(s′|s,a)
are implemented as deterministic functions, which represent
the simulator of environment2 and the model predictive con-
troller.

Third, the reward function R(s′, t|s,o) is implemented as
follows:

R(s′, t|s,o) := Σt
i=0γ ir(si,ai), (13)

r(si,ai) =

{
100 (if car position in si > 0.6)
−ai (otherwise)

,(14)

where si and ai are a state and a primitive action sampled
from the environment i time steps later from the executing
option o, respectively. Eq. (14) represents “low-level” reward
r(si), which is fed in accordance with ai and the car position
included in si.

Fourth, P(θsg f ;θ ′sg f) and P(θhp;θ ′hp) are implemented as
follows:

P(θsg f ;θ ′sg f) := ∏
sh∈Sh

N(µsh |µ
′
sh
,1) ·Uni(σsh), (15)

P(θhp;θ ′hp) := ∏
gh∈Sh

|sh|

∏
i=0

N(wgh,i|µ
′
wgh,i

,1). (16)

Eq. (15) represents a distribution for µsh and σsh . The com-
ponent for µsh is a normal distribution, which has mean µ ′sh
and standard deviation 1, and the component for σsh is a uni-
form distribution Uni(σsh). In addition, Eq. (16) represents
the normal distribution for wgh,i, which is the i-th element of
wwwgh . This distribution has mean µ ′wgh,i

and standard deviation

1. Note that, in this implementation, θ ′sg f and θ ′hp are µ ′sh
and

µ ′wgh,i
, respectively.

Finally, functionals in Eq. (6) and Eq. (7), are implemented
as follows:
Implementation of arg min

θ ′sg f

Dsg f (·) : Using Eq. (15), µ ′sh
is

set as the mean of the corresponding interval, which is
defined in the knowledge base for grounding functions.
For example, µ ′Bottom of hills(car) is determined as −0.5,
the mean of [−0.6,−0.4] in Table 2.

Implementation of arg min
θ ′hp

Dhp (·): Using Eq. (7), µ ′wgh
is

determined by Algorithm 1. The algorithm is outlined as
follows: first initialize µwgh

with valnin (line 1–3), and if
the operator, in which sh refers to the preconditions and
s′h refers to the effects, is contained in knowledge base
KBhp, the corresponding weight is initialized with Valin
(line 4–11). KBhp is initialized in accordance with Table
1 before it is passed to the algorithm.

2Open AI gym was used as the simulator: https://github.
com/openai/gym/wiki/MountainCarContinuous-v0

L & R 2018

- 43 -

Algorithm 1 Implementation of arg min
θ ′hp

Dhp

Require: The following variables are given:
(1) Set of abstract symbolic information Sh.
(2) Set of operators Khp included in the knowledge base
for the high-level planner. Each operator is represented
as a tuple (precondition, effect).
(3) Set of hyper parameters µ ′wgh

for all possible abstract
symbolic information sh.
(4) Weight value valin to be assigned to the weight of an
operator, which is included in the knowledge base.
(5) Weight value valnin to be assigned to the weight of an
operator, which is not included in the knowledge base.
(6) Index function I(sh) that maps sh to index i∈ I. i used
to access the element of µ ′wgh

.
1: for sh ∈ Sh do
2: Initialize µ ′wgh

with valnin

3: end for
4: for sh ∈ Sh do
5: i← 0
6: for s′h ∈ Sh do
7: if (sh,s′h) ∈ Khp then
8: µ ′wgh,I(s

′
h)
← valin

9: end if
10: end for
11: end for

4.3 Refining Symbol Grounding and High-Level
Planning with Policy Gradients

Refining the high-level planner P(gh|sh;θhp) and sym-
bol grounding functions (P(sh|s;θsg f) and P(g|gh;θsg f)) is
achieved by a parameter update in Eq. (17). This equa-
tion contains two unique terms: a reinforcement term and a
penalty term. The reinforcement term contributes to updat-
ing the parameters to maximize the expected cumulative re-
ward, as in standard reinforcement learning. The penalty term
contributes to keeping the parameters consistent with the pri-
ors (i.e., manually-designed knowledge bases). This update
is derived by substituting θsg f ||θhp and Eq. (5) for θ and Eq.
(3), respectively. Using the example described in Section 4.2,
µsh , σsh and wwwgh are updated in this equation. In this case, the
penalty term prevents µsh and wgh,i, for all sh, gh, and i, from
moving far away from µ ′sh

and µ ′wgh ,i
, respectively.

5 Experiments

In this section, we perform an experimental evaluation to in-
vestigate whether the symbol grounding functions and high-
level planner are refined successfully by using the framework
we proposed in the previous section. In Section 5.1, we focus
on the evaluation for refining the symbol grounding functions
only. Then, in Section 5.2, we evaluate the effect of jointly
refining symbol grounding functions and the high-level plan-
ner.

5.1 Refinement of Symbol Grounding
We evaluate how the symbol grounding functions are refined
by our framework to solve the mountain car problem. The
experimental set up to implement the planner and our frame-
work is the same as that in the example introduced in Section
3 and Section 4.

For the evaluation, we prepared three types of method:
Baseline: A hierarchical planner that uses the grounding

functions and a high-level planner, which are manually
designed. This planner is identical to that introduced in
the example in Section 3.

NoPenalty: The framework that refines the symbol ground-
ing functions without the penalty term in Eq. (17). In
this method, the high-level planner is the same as that in
Baseline.

Proposed: The framework that refines the symbol ground-
ing functions with the penalty term. In this method, the
high-level planner is the same as that in Baseline.

These methods were evaluated on the basis of two criteria:
an average cumulative reward over episodes, and a parameter
divergence. The former is to evaluate if the hierarchical plan-
ner produces a more appropriate plan by refining its modules,
and the latter is to evaluate the interpretability of the refined
modules. The parameter divergence represents how much
the policy’s parameters (µsh)3 refined by the framework dif-
fer from the initial parameters. In this paper, this divergence
is measured by the Euclidean distance between the refined
parameter (µsh) and its initial parameter (µ ′sh

). Initial values
for µsh and σsh are given, shown as “Init” in Table 3. µsh is
initialized with µ ′sh

, which is determined on the basis of the
implementation of the functional in Eq. (6) (see Section 4.2),
and σsh is manually determined. We consider 50 episodes as
one epoch and performed refinement over 2000 epochs.

The experimental results (shown in Figures 4 and 5) show
that 1) refining the grounding functions improves the per-
formance (average cumulative reward) of hierarchical plan-
ners, and 2) considering the penalty term keeps the refined
parameters within a certain distance from the initial parame-
ters. Regarding 1), Figure 4 shows the methods in which the
grounding functions are refined (NoPenalty and Proposed)
outperform Baseline. This result indicates the refinement for
grounding functions successfully improves its performance.
Regarding 2), Figure 5 shows that the parameter in NoPenalty
moves away from the original parameter in refining, while in
Proposed, the parameter stays close to the original one.

An example of the refined parameter for the ground-
ing functions for Proposed is shown in Table 3, which
indicates that the parameter is updated to achieve high-
performance planning while staying close to the original pa-
rameter. In this example, the mean and standard deviation
of “On right side hill(Car)” is changed significantly through
refinement. The mean for grounding On right side hill(Car)
is biased to a more negative position, and also flattened
to make the car climb up the left side hill quickly (Fig-
ure 6). This change makes the symbol grounding func-
tion more flattened and considers the center position as

3We assume µsh dominatingly determines the behaviors of sym-
bol grounding functions.

L & R 2018

- 44 -

θsg f ||θhp← θsg f ||θhp +αVπθsg f ||θhp
(s̃0){∇θsg f ||θhp logP(g̃0| ˜gh,0;θsg f)P(˜gh,0| ˜sh,0;θhp)P(˜sh,0|s̃0;θsg f)

︸ ︷︷ ︸
reinforcement term

+∇θsg f ||θhp logP(θsg f)P(θhp)
︸ ︷︷ ︸

penalty term

} (17)

Figure 4: Learning curves for
each methods. The vertical
axis represents average cumu-
lative rewards and the horizon-
tal axis the horizontal axis rep-
resents epochs (50 episodes for
each epoch).

Figure 5: Parameter diver-
gences. The vertical axis repre-
sents the average Euclidean dis-
tance and the horizontal axis rep-
resents learning epochs.

Table 3: Refined parameters.
µsh Bottom o f hills At top o f right side hill On right side hill On le f t side hill
Init -0.5 0.6 0.2 -1.1

Refined -0.5 0.46 -0.39 -1.1

σsh Bottom o f hills At top o f right side hill On right side hill On le f t side hill
Init 0.4 0.1 0.4 0.3

Refined 0.4 0.12 1.42 0.11

“On right side hill(Car).” The main interpretation of this re-
sult is that the symbol grounding function was refined to re-
duce the redundancy in high-level planning. In the original
symbol grounding functions, the center position is grounded
to “Bottom of hills (Car),” and the high-level planner makes
a plan [Bottom of hills(Car) → On right side hill(Car)
→ On left side hill(Car) → At top of right side hill(Car)],
which means “Starting at the bottom of hills, visit, in
order, the right side hill, the left side hill, and the
top of the right side hill.” However, this plan is redun-
dant; the car does not need to visit the right side hill
first. The refined symbol grounding function considers
the center position as “Right side hill(Car),” and thus the
high-level planner produces the plan [Bottom of hills(Car)
→ On right side hill(Car) → On left side hill(Car) →
At top of right side hill(Car)], in which the redundancy is
removed. It should also be noted that the order of the re-
fined means is intuitively correct. For example, the value
of µOn right side hill is higher than the value of µOn left side hill
(i.e., µOn right side hill means the place on more right-side
than µOn left side hill). It cannot be seen in the Baseline and
NoPenalty cases. This result supports the fact that our frame-
work refines the modules by maintaining their interpretabil-
ity.

5.2 Joint Refinement of Symbol Grounding and
High-Level Planning

In this section, we refine both the symbol grounding func-
tions and the high-level planner. The setup of the hierarchical
planner and the problem are the same as those of the previous
section, except for the knowledge base for the high-level plan-
ner. We removed “Opr.2” (as shown in Table 1) and used this
degraded version as the knowledge base for the experiment.

Figure 6: Example of refining
result symbol grounding function
for On right side hill.

Figure 7: Learning curve.

This degradation makes a space for refining the knowledge
base for the high-level planner. In addition, we put a small
coefficient of the penalty term for wwwgh , because we found that
considering this term too much makes the refinement worse
in a preliminary experiment. As long as the results of the
symbol grounding functions are interpretable, the result of the
high-level planner is interpretable as well. wwwgh is initialized
with w′gh,i, which is determined by (i.e., Algorithm 1) where
we set -1.3 as valin, and -0.02 as valnin. The resulting w′gh,i is
shown as “Init” in Table 4.

We prepared three types of methods:
NoRefining: A hierarchical planner with the degraded ver-

sion of the knowledge base for high-level planner. The
knowledge base for the symbol grounding function is the
same to that shown in Table 2.

RefiningHP: The framework that refines the high-level plan-
ner only. In this method, symbol grounding functions
are the same as those in NoRefining.

RefiningHPSGF: The framework that refines both symbol
grounding functions and the high-level planner.

From the experimental result (Figure 7), we can confirm
that our framework successfully refines both symbol ground-
ing functions and the high-level planner, from the viewpoint
of performance. RefiningHP outperforms NoRefining, and
RefiningHPSGF outperforms the other methods.

Table 4 provides an example of how the high-level plan-
ner was refined. It indicates that the dropped knowledge (i.e.,
Opr. 2) was successfully acquired in refinement, and knowl-
edge is discovered that makes high-level planning more effi-
cient. Considering the form of Eq. (12), the operator, which
corresponds to the element of a weight with a higher value,
contributes more to high-level planning. Therefore, these cor-
responding operators are worthwhile as knowledge for high-
level planning. In Table 4, the refined weight of the operator
(preconditions=On right side hill, effects=On left side hill)
is higher than those of other operators in which the pre-
condition contains On right side hill. This operator was
once initially removed and later acquired by the refinement.
Similarly, the operator (preconditions=Bottom of hills, ef-
fects=On left side hill), which is not shown in Table 1, was
newly acquired.

L & R 2018

- 45 -

Table 4: Example of high-level planner improvement. Refined weights wwwgh are shown for each precondition (column) and effect (row). Initial
weights are shown in parentheses.ɹ

Refined (Init) Bottom of hills At top of right side hill On right side hill On left side hill
Bottom of hills -5.88 (-1.3) -6.34 (-1.3) -3.15 (-1.3) -6.65 (-1.3)

At top of right side hill -9.04 (-1.3) -9.75 (-1.3) -4.76 (-1.3) 2.5 (-0.02)
On right side hill -0.98 (-0.02) 1 (-1.3) -2.03 (-1.3) -1.34 (-1.3)
On left side hill 0.85 (-1.3) -2.12 (-1.3) 1.74 (-1.3) -11.71 (-1.3)

6 Conclusion
In this paper, we proposed a framework that refines manually-
designed symbol grounding functions and a high-level plan-
ner. Our framework refines these modules with policy gra-
dients. Unlike standard policy gradient implementations, our
framework additionally considers the penalty term to keep pa-
rameters close to the prior parameter derived from manually-
designed modules. Experimental results showed that our
framework successfully refined the parameters for the mod-
ules; it improves the performance (cumulative reward) of the
hierarchical planner, and keeps the parameters close to those
derived from the manually-designed modules.

One of the limitations of our framework is that it deals
only with predefined symbols (such “Bottom of hills”), and
it does not discover new symbols. We plan to address this
drawback in future work. We also plan to evaluate our frame-
work in a more complex domain where primitive actions and
states are high-dimensional, and the knowledge base is rep-
resented in a more complex description (e.g., precondition
contains multiple states).

References
[Camacho and Alba, 2013] Eduardo F Camacho and Carlos Bor-

dons Alba. Model predictive control. Springer Science & Business
Media, 2013.

[Cambon et al., 2009] Stéphane Cambon, Rachid Alami, and Fa-
bien Gravot. A hybrid approach to intricate motion, manipulation
and task planning. The International Journal of Robotics Research,
28(1):104–126, 2009.

[Choi and Amir, 2009] Jaesik Choi and Eyal Amir. Combining
planning and motion planning. In Proc. of ICRA-09, pages 238–
244. IEEE, 2009.

[Das et al., 2017] Abhishek Das, Satwik Kottur, José M. F. Moura,
Stefan Lee, and Dhruv Batra. Learning cooperative visual dialog
agents with deep reinforcement learning. arXiv:1703.06585, 2017.

[Dornhege et al., 2009] Christian Dornhege, Marc Gissler,
Matthias Teschner, and Bernhard Nebel. Integrating symbolic and
geometric planning for mobile manipulation. In Proc. of SSRR-09,
pages 1–6. IEEE, 2009.

[Fdez-Olivares et al., 2011] Juan Fdez-Olivares, Luis Castillo,
Juan A Cózar, and Oscar Garcı́a Pérez. Supporting clinical pro-
cesses and decisions by hierarchical planning and scheduling.
Computational Intelligence, 27(1):103–122, 2011.

[Kaelbling and Lozano-Pérez, 2011] Leslie Pack Kaelbling and
Tomás Lozano-Pérez. Hierarchical task and motion planning in
the now. In Proc. of ICRA-11, pages 1470–1477. IEEE, 2011.

[Kakade, 2002] Sham M Kakade. A natural policy gradient. In
Proc. of NIPS-02, pages 1531–1538, 2002.

[Konidaris et al., 2014] George Konidaris, Leslie Pack Kaelbling,
and Tomas Lozano-Perez. Constructing symbolic representations
for high-level planning. In Proc. of AAAI-14, 2014.

[Konidaris et al., 2015] George Konidaris, Leslie Pack Kaelbling,
and Tomas Lozano-Perez. Symbol acquisition for probabilistic
high-level planning. In Proc .of IJCAI-15, 2015.

[Konidaris, 2016] George Konidaris. Constructing abstraction hier-
archies using a skill-symbol loop. In Proc. of IJCAI-16, 2016.

[Malcolm and Smithers, 1990] Chris Malcolm and Tim Smithers.
Symbol grounding via a hybrid architecture in an autonomous as-
sembly system. Robotics and Autonomous Systems, 6(1-2):123–
144, 1990.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab, Adele
Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. PDDL-the planning domain definition
language. 1998.

[Moore, 1991] Andrew Moore. Efficient memory-based learning
for robot control. March 1991.

[Nilsson, 1984] Nils J Nilsson. Shakey the robot. Technical report,
SRI INTERNATIONAL MENLO PARK CA, 1984.

[Özdamar et al., 1998] Linet Özdamar, M Ali Bozyel, and S Ilker
Birbil. A hierarchical decision support system for production plan-
ning (with case study). European Journal of Operational Re-
search, 104(3):403–422, 1998.

[Schulman et al., 2015] John Schulman, Sergey Levine, Pieter
Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Proc. of ICML-15, pages 1889–1897, 2015.

[Silver et al., 2014] David Silver, Guy Lever, Nicolas Heess,
Thomas Degris, Daan Wierstra, and Martin Riedmiller. Determin-
istic policy gradient algorithms. In Proc. of ICML-14, 2014.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddison,
Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural net-
works and tree search. nature, 529(7587):484–489, 2016.

[Sutton et al., 1999] Richard S Sutton, Doina Precup, and Satinder
Singh. Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999.

[Sutton et al., 2000] Richard S Sutton, David A McAllester, Satin-
der P Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Proc. of
NIPS-00, pages 1057–1063, 2000.

[Williams, 1992] Ronald J Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement learning. In
Reinforcement Learning, pages 5–32. Springer, 1992.

[Wolfe et al., 2010] Jason Andrew Wolfe, Bhaskara Marthi, and
Stuart J Russell. Combined task and motion planning for mobile

manipulation. In Proc. of ICAPS-10, 2010.

L & R 2018

- 46 -

